pvc-ansible/group_vars/default/pvc.yml

121 lines
5.8 KiB
YAML
Raw Normal View History

---
# Logging configuration (uncomment to override defaults)
#pvc_log_to_file: False # Log to a file in /var/log/pvc
#pvc_log_to_stdout: True # Log to stdout (i.e. journald)
#pvc_log_colours: True # Log colourful prompts for states instead of text
#pvc_log_dates: False # Log dates (useful with log_to_file, not useful with log_to_stdout as journald adds these)
#pvc_log_keepalives: True # Log keepalive event every pvc_keepalive_interval seconds
#pvc_log_keepalive_cluster_details: True # Log cluster details (VMs, load, etc.) duing keepalive events
#pvc_log_keepalive_storage_details: True # Log storage details (OSDs, pools, health) during keepalive events
#pvc_log_console_lines: 1000 # The number of VM console log lines to store in Zookeeper for 'vm log' commands.
# Timing and fencing configuration (uncomment to override defaults)
#pvc_vm_shutdown_timeout: 180 # Number of seconds before a 'shutdown' VM is forced off
#pvc_keepalive_interval: 5 # Number of seconds between keepalive ticks
#pvc_fence_intervals: 6 # Number of keepalive ticks before a node is considered dead
#pvc_suicide_intervals: 0 # Number of keepalive ticks before a node consideres itself dead (0 to disable)
#pvc_fence_successful_action: migrate # What to do with VMs when a fence is successful (migrate, None)
#pvc_fence_failed_action: None # What to do with VMs when a fence is failed (migrate, None) - migrate is DANGEROUS without pvc_suicide_intervals set to < pvc_fence_intervals
#pvc_fence_migrate_target_selector: mem # The selector to use for migrating VMs after a fence
# Client API configuration
2023-09-01 15:42:22 -04:00
pvc_api_listen_address: "{{ pvc_upstream_floatingip }}"
2023-09-01 15:42:21 -04:00
pvc_api_listen_port: "7370"
2023-09-01 15:42:22 -04:00
pvc_api_enable_authentication: True
pvc_api_secret_key: ""
pvc_api_tokens:
- description: "myuser"
2023-09-01 15:42:22 -04:00
token: "a3945326-d36c-4024-83b3-2a8931d7785a"
pvc_api_enable_ssl: False
pvc_api_ssl_cert: >
# A RAW CERTIFICATE FILE, installed to /etc/pvc/api-cert.pem
pvc_api_ssl_key: >
# A RAW KEY FILE, installed to /etc/pvc/api-key.pem
2023-09-01 15:42:21 -04:00
# Ceph storage configuration
pvc_ceph_storage_secret_uuid: "" # Use uuidgen to generate
# Database configuration
pvc_dns_database_name: "pvcdns"
pvc_dns_database_user: "pvcdns"
pvc_dns_database_password: "" # Use pwgen to generate
2023-09-01 15:42:22 -04:00
pvc_prov_database_name: "pvcprov"
pvc_prov_database_user: "pvcprov"
pvc_prov_database_password: "" # Use pwgen to generate
pvc_replication_database_user: "replicator"
pvc_replication_database_password: "" # Use pwgen to generate
pvc_superuser_database_user: "postgres"
pvc_superuser_database_password: "" # Use pwgen to generate
# Network routing configuration
# > The ASN should be a private ASN number.
# > The list of routers are those which will learn routes to the PVC client networks via BGP;
# they should speak BGP and allow sessions from the PVC nodes.
pvc_asn: "65500"
pvc_routers:
- "192.168.100.1"
# Node list
# > Every node configured with this playbook must be specified in this list.
pvc_nodes:
- hostname: "pvchv1" # This name MUST match the Ansible inventory_hostname
is_coordinator: yes
node_id: 1
router_id: "192.168.100.11"
upstream_ip: "192.168.100.11"
cluster_ip: "10.0.0.1"
storage_ip: "10.0.1.1"
ipmi_host: "pvchv1-lom.{{ local_domain }}"
ipmi_user: "{{ username_ipmi_host }}"
ipmi_password: "{{ passwd_ipmi_host }}"
- hostname: "pvchv2"
is_coordinator: yes
node_id: 2
router_id: "192.168.100.12"
upstream_ip: "192.168.100.12"
cluster_ip: "10.0.0.2"
storage_ip: "10.0.1.2"
ipmi_host: "pvchv2-lom.{{ local_domain }}"
ipmi_user: "{{ username_ipmi_host }}"
ipmi_password: "{{ passwd_ipmi_host }}"
- hostname: "pvchv3"
is_coordinator: yes
node_id: 3
router_id: "192.168.100.13"
upstream_ip: "192.168.100.13"
cluster_ip: "10.0.0.3"
storage_ip: "10.0.1.3"
ipmi_host: "pvchv3-lom.{{ local_domain }}"
ipmi_user: "{{ username_ipmi_host }}"
ipmi_password: "{{ passwd_ipmi_host }}"
# Bridge device entry
# This device is passed to PVC and is used when creating bridged networks. Normal managed networks are
# created on top of the "cluster" interface defined below, however bridged networks must be created
# directly on an underlying non-vLAN network device. This can be the same underlying device as the
# upstream/cluster/storage networks (especially if the upstream network device is not a vLAN itself),
# or a different device separate from the other 3 main networks.
pvc_bridge_device: bondU # Replace based on your network configuration
# Configuration file networks
# > Taken from base.yml's configuration; do not modify this section.
pvc_upstream_device: "{{ networks['upstream']['device'] }}"
pvc_upstream_mtu: "{{ networks['upstream']['mtu'] }}"
pvc_upstream_domain: "{{ networks['upstream']['domain'] }}"
2023-09-01 15:42:22 -04:00
pvc_upstream_netmask: "{{ networks['upstream']['netmask'] }}"
pvc_upstream_subnet: "{{ networks['upstream']['subnet'] }}"
pvc_upstream_floatingip: "{{ networks['upstream']['floating_ip'] }}"
pvc_upstream_gatewayip: "{{ networks['upstream']['gateway_ip'] }}"
pvc_cluster_device: "{{ networks['cluster']['device'] }}"
pvc_cluster_mtu: "{{ networks['cluster']['mtu'] }}"
pvc_cluster_domain: "{{ networks['cluster']['domain'] }}"
2023-09-01 15:42:22 -04:00
pvc_cluster_netmask: "{{ networks['cluster']['netmask'] }}"
pvc_cluster_subnet: "{{ networks['cluster']['subnet'] }}"
pvc_cluster_floatingip: "{{ networks['cluster']['floating_ip'] }}"
pvc_storage_device: "{{ networks['storage']['device'] }}"
pvc_storage_mtu: "{{ networks['storage']['mtu'] }}"
pvc_storage_domain: "{{ networks['storage']['domain'] }}"
2023-09-01 15:42:22 -04:00
pvc_storage_netmask: "{{ networks['storage']['netmask'] }}"
pvc_storage_subnet: "{{ networks['storage']['subnet'] }}"
pvc_storage_floatingip: "{{ networks['storage']['floating_ip'] }}"