pvc/node-daemon/pvcnoded/objects/NodeInstance.py

945 lines
40 KiB
Python

#!/usr/bin/env python3
# NodeInstance.py - Class implementing a PVC node in pvcnoded
# Part of the Parallel Virtual Cluster (PVC) system
#
# Copyright (C) 2018-2022 Joshua M. Boniface <joshua@boniface.me>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
import time
from threading import Thread, Event
import daemon_lib.common as common
class NodeInstance(object):
# Initialization function
def __init__(
self,
name,
this_node,
zkhandler,
config,
logger,
d_node,
d_network,
d_domain,
dns_aggregator,
metadata_api,
):
# Passed-in variables on creation
self.name = name
self.this_node = this_node
self.zkhandler = zkhandler
self.config = config
self.logger = logger
# Which node is primary
self.primary_node = None
# States
self.daemon_mode = self.zkhandler.read(("node.mode", self.name))
self.daemon_state = "stop"
self.coordinator_state = "client"
self.domain_state = "flushed"
# Object lists
self.d_node = d_node
self.d_network = d_network
self.d_domain = d_domain
self.dns_aggregator = dns_aggregator
self.metadata_api = metadata_api
# Printable lists
self.active_node_list = []
self.flushed_node_list = []
self.inactive_node_list = []
self.network_list = []
self.domain_list = []
# Node resources
self.health = 100
self.domains_count = 0
self.memused = 0
self.memfree = 0
self.memalloc = 0
self.vcpualloc = 0
# Floating IP configurations
if self.config["enable_networking"]:
self.upstream_dev = self.config["upstream_dev"]
self.upstream_floatingipaddr = self.config["upstream_floating_ip"].split(
"/"
)[0]
self.upstream_ipaddr, self.upstream_cidrnetmask = self.config[
"upstream_dev_ip"
].split("/")
self.cluster_dev = self.config["cluster_dev"]
self.cluster_floatingipaddr = self.config["cluster_floating_ip"].split("/")[
0
]
self.cluster_ipaddr, self.cluster_cidrnetmask = self.config[
"cluster_dev_ip"
].split("/")
self.storage_dev = self.config["storage_dev"]
self.storage_floatingipaddr = self.config["storage_floating_ip"].split("/")[
0
]
self.storage_ipaddr, self.storage_cidrnetmask = self.config[
"storage_dev_ip"
].split("/")
else:
self.upstream_dev = None
self.upstream_floatingipaddr = None
self.upstream_ipaddr = None
self.upstream_cidrnetmask = None
self.cluster_dev = None
self.cluster_floatingipaddr = None
self.cluster_ipaddr = None
self.cluster_cidrnetmask = None
self.storage_dev = None
self.storage_floatingipaddr = None
self.storage_ipaddr = None
self.storage_cidrnetmask = None
# Threads
self.flush_thread = None
self.flush_event = Event()
# Flags
self.flush_stopper = False
# Zookeeper handlers for changed states
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.state.daemon", self.name)
)
def watch_node_daemonstate(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = "stop"
if data != self.daemon_state:
self.daemon_state = data
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.state.router", self.name)
)
def watch_node_routerstate(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = "client"
if self.name == self.this_node and self.daemon_mode == "coordinator":
# We're a coordinator so we care about networking
if data != self.coordinator_state:
self.coordinator_state = data
if self.config["enable_networking"]:
if self.coordinator_state == "takeover":
self.logger.out(
"Setting node {} to primary state".format(self.name),
state="i",
)
transition_thread = Thread(
target=self.become_primary, args=(), kwargs={}
)
transition_thread.start()
if self.coordinator_state == "relinquish":
# Skip becoming secondary unless already running
if (
self.daemon_state == "run"
or self.daemon_state == "shutdown"
):
self.logger.out(
"Setting node {} to secondary state".format(
self.name
),
state="i",
)
transition_thread = Thread(
target=self.become_secondary, args=(), kwargs={}
)
transition_thread.start()
else:
# We did nothing, so just become secondary state
self.zkhandler.write(
[(("node.state.router", self.name), "secondary")]
)
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.state.domain", self.name)
)
def watch_node_domainstate(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = "unknown"
if data != self.domain_state:
self.domain_state = data
# toggle state management of this node
if self.name == self.this_node:
# Stop any existing flush jobs
if self.flush_thread is not None:
self.logger.out(
"Waiting for previous migration to complete",
state="i",
)
self.flush_stopper = True
self.flush_event.wait()
self.flush_event.clear()
# Do flushing in a thread so it doesn't block the migrates out
if self.domain_state == "flush":
self.flush_thread = Thread(
target=self.flush, args=(), kwargs={}
)
self.flush_thread.start()
# Do unflushing in a thread so it doesn't block the migrates in
if self.domain_state == "unflush":
self.flush_thread = Thread(
target=self.unflush, args=(), kwargs={}
)
self.flush_thread.start()
try:
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.monitoring.health", self.name)
)
def watch_node_health(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = 100
try:
data = int(data)
except ValueError:
pass
if data != self.health:
self.health = data
except Exception:
pass
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.memory.free", self.name)
)
def watch_node_memfree(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = 0
if data != self.memfree:
self.memfree = data
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.memory.used", self.name)
)
def watch_node_memused(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = 0
if data != self.memused:
self.memused = data
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.memory.allocated", self.name)
)
def watch_node_memalloc(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = 0
if data != self.memalloc:
self.memalloc = data
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.vcpu.allocated", self.name)
)
def watch_node_vcpualloc(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = 0
if data != self.vcpualloc:
self.vcpualloc = data
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.running_domains", self.name)
)
def watch_node_runningdomains(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii").split()
except AttributeError:
data = []
if data != self.domain_list:
self.domain_list = data
@self.zkhandler.zk_conn.DataWatch(
self.zkhandler.schema.path("node.count.provisioned_domains", self.name)
)
def watch_node_domainscount(data, stat, event=""):
if event and event.type == "DELETED":
# The key has been deleted after existing before; terminate this watcher
# because this class instance is about to be reaped in Daemon.py
return False
try:
data = data.decode("ascii")
except AttributeError:
data = 0
if data != self.domains_count:
self.domains_count = data
# Update value functions
def update_node_list(self, d_node):
self.d_node = d_node
def update_network_list(self, d_network):
self.d_network = d_network
network_list = []
for network in self.d_network:
network_list.append(d_network[network].vni)
self.network_list = network_list
def update_domain_list(self, d_domain):
self.d_domain = d_domain
######
# Phases of node transition
#
# Current Primary Candidate Secondary
# -> secondary -> primary
#
# def become_secondary() def become_primary()
#
# A ----------------------------------------------------------------- SYNC (candidate)
# B ----------------------------------------------------------------- SYNC (current)
# 1. Stop DNS aggregator ||
# 2. Stop DHCP servers ||
# 4a) network 1 ||
# 4b) network 2 ||
# etc. ||
# 3. Stop client API ||
# 4. Stop metadata API ||
# --
# C ----------------------------------------------------------------- SYNC (candidate)
# 5. Remove upstream floating IP 1. Add upstream floating IP ||
# --
# D ----------------------------------------------------------------- SYNC (candidate)
# 6. Remove cluster floating IP 2. Add cluster floating IP ||
# --
# E ----------------------------------------------------------------- SYNC (candidate)
# 7. Remove metadata floating IP 3. Add metadata floating IP ||
# --
# F ----------------------------------------------------------------- SYNC (candidate)
# 8. Remove gateway IPs 4. Add gateway IPs ||
# 8a) network 1 4a) network 1 ||
# 8b) network 2 4b) network 2 ||
# etc. etc. ||
# --
# G ----------------------------------------------------------------- SYNC (candidate)
# 5. Transition Patroni primary ||
# 6. Start client API ||
# 7. Start metadata API ||
# 8. Start DHCP servers ||
# 5a) network 1 ||
# 5b) network 2 ||
# etc. ||
# 9. Start DNS aggregator ||
# --
######
def become_primary(self):
"""
Acquire primary coordinator status from a peer node
"""
# Lock the primary node until transition is complete
primary_lock = self.zkhandler.exclusivelock("base.config.primary_node")
primary_lock.acquire()
# Ensure our lock key is populated
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
# Synchronize nodes A (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase A", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase A", state="o")
time.sleep(1) # Time fir reader to acquire the lock
self.logger.out("Releasing write lock for synchronization phase A", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase A", state="o")
time.sleep(0.1) # Time fir new writer to acquire the lock
# Synchronize nodes B (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase B", state="i")
lock.acquire()
self.logger.out("Acquired read lock for synchronization phase B", state="o")
self.logger.out("Releasing read lock for synchronization phase B", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase B", state="o")
# Synchronize nodes C (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase C", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase C", state="o")
time.sleep(0.5) # Time fir reader to acquire the lock
# 1. Add Upstream floating IP
self.logger.out(
"Creating floating upstream IP {}/{} on interface {}".format(
self.upstream_floatingipaddr, self.upstream_cidrnetmask, "brupstream"
),
state="o",
)
common.createIPAddress(
self.upstream_floatingipaddr, self.upstream_cidrnetmask, "brupstream"
)
self.logger.out("Releasing write lock for synchronization phase C", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase C", state="o")
# Synchronize nodes D (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase D", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase D", state="o")
time.sleep(0.2) # Time fir reader to acquire the lock
# 2. Add Cluster & Storage floating IP
self.logger.out(
"Creating floating management IP {}/{} on interface {}".format(
self.cluster_floatingipaddr, self.cluster_cidrnetmask, "brcluster"
),
state="o",
)
common.createIPAddress(
self.cluster_floatingipaddr, self.cluster_cidrnetmask, "brcluster"
)
self.logger.out(
"Creating floating storage IP {}/{} on interface {}".format(
self.storage_floatingipaddr, self.storage_cidrnetmask, "brstorage"
),
state="o",
)
common.createIPAddress(
self.storage_floatingipaddr, self.storage_cidrnetmask, "brstorage"
)
self.logger.out("Releasing write lock for synchronization phase D", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase D", state="o")
# Synchronize nodes E (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase E", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase E", state="o")
time.sleep(0.2) # Time fir reader to acquire the lock
# 3. Add Metadata link-local IP
self.logger.out(
"Creating Metadata link-local IP {}/{} on interface {}".format(
"169.254.169.254", "32", "lo"
),
state="o",
)
common.createIPAddress("169.254.169.254", "32", "lo")
self.logger.out("Releasing write lock for synchronization phase E", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase E", state="o")
# Synchronize nodes F (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase F", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase F", state="o")
time.sleep(0.2) # Time fir reader to acquire the lock
# 4. Add gateway IPs
for network in self.d_network:
self.d_network[network].createGateways()
self.logger.out("Releasing write lock for synchronization phase F", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase F", state="o")
# Synchronize nodes G (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase G", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase G", state="o")
time.sleep(0.2) # Time fir reader to acquire the lock
# 5. Transition Patroni primary
self.logger.out("Setting Patroni leader to this node", state="i")
tick = 1
patroni_failed = True
# As long as we're in takeover, keep trying to set the Patroni leader to us
while self.coordinator_state == "takeover":
# Switch Patroni leader to the local instance
retcode, stdout, stderr = common.run_os_command(
"""
patronictl
-c /etc/patroni/config.yml
switchover
--candidate {}
--force
pvc
""".format(
self.name
)
)
# Combine the stdout and stderr and strip the output
# Patronictl's output is pretty junky
if stderr:
stdout += stderr
stdout = stdout.strip()
# Handle our current Patroni leader being us
if stdout and stdout.split("\n")[-1].split() == [
"Error:",
"Switchover",
"target",
"and",
"source",
"are",
"the",
"same.",
]:
self.logger.out(
"Failed to switch Patroni leader to ourselves; this is fine\n{}".format(
stdout
),
state="w",
)
patroni_failed = False
break
# Handle a failed switchover
elif stdout and (
stdout.split("\n")[-1].split()[:2] == ["Switchover", "failed,"]
or stdout.strip().split("\n")[-1].split()[:1] == ["Error"]
):
if tick > 4:
self.logger.out(
"Failed to switch Patroni leader after 5 tries; aborting",
state="e",
)
break
else:
self.logger.out(
"Failed to switch Patroni leader; retrying [{}/5]\n{}\n".format(
tick, stdout
),
state="e",
)
tick += 1
time.sleep(5)
# Otherwise, we succeeded
else:
self.logger.out(
"Successfully switched Patroni leader\n{}".format(stdout), state="o"
)
patroni_failed = False
time.sleep(0.2)
break
# 6. Start client API
if self.config["enable_api"]:
self.logger.out("Starting PVC API client service", state="i")
common.run_os_command("systemctl enable pvcapid.service")
common.run_os_command("systemctl start pvcapid.service")
# 7. Start metadata API; just continue if we fail
self.metadata_api.start()
# 8. Start DHCP servers
for network in self.d_network:
self.d_network[network].startDHCPServer()
# 9. Start DNS aggregator; just continue if we fail
try:
if not patroni_failed:
self.dns_aggregator.start_aggregator()
else:
raise
except Exception:
self.logger.out(
"Not starting DNS aggregator due to Patroni failures", state="e"
)
self.logger.out("Releasing write lock for synchronization phase G", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase G", state="o")
# Wait 2 seconds for everything to stabilize before we declare all-done
time.sleep(2)
primary_lock.release()
self.zkhandler.write([(("node.state.router", self.name), "primary")])
self.logger.out(
"Node {} transitioned to primary state".format(self.name), state="o"
)
def become_secondary(self):
"""
Relinquish primary coordinator status to a peer node
"""
time.sleep(0.2) # Initial delay for the first writer to grab the lock
# Synchronize nodes A (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase A", state="i")
lock.acquire()
self.logger.out("Acquired read lock for synchronization phase A", state="o")
self.logger.out("Releasing read lock for synchronization phase A", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase A", state="o")
# Synchronize nodes B (I am writer)
lock = self.zkhandler.writelock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring write lock for synchronization phase B", state="i")
lock.acquire()
self.logger.out("Acquired write lock for synchronization phase B", state="o")
time.sleep(0.2) # Time fir reader to acquire the lock
# 1. Stop DNS aggregator
self.dns_aggregator.stop_aggregator()
# 2. Stop DHCP servers
for network in self.d_network:
self.d_network[network].stopDHCPServer()
self.logger.out("Releasing write lock for synchronization phase B", state="i")
self.zkhandler.write([("base.config.primary_node.sync_lock", "")])
lock.release()
self.logger.out("Released write lock for synchronization phase B", state="o")
# 3. Stop client API
if self.config["enable_api"]:
self.logger.out("Stopping PVC API client service", state="i")
common.run_os_command("systemctl stop pvcapid.service")
common.run_os_command("systemctl disable pvcapid.service")
# 4. Stop metadata API
self.metadata_api.stop()
time.sleep(0.1) # Time fir new writer to acquire the lock
# Synchronize nodes C (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase C", state="i")
lock.acquire()
self.logger.out("Acquired read lock for synchronization phase C", state="o")
# 5. Remove Upstream floating IP
self.logger.out(
"Removing floating upstream IP {}/{} from interface {}".format(
self.upstream_floatingipaddr, self.upstream_cidrnetmask, "brupstream"
),
state="o",
)
common.removeIPAddress(
self.upstream_floatingipaddr, self.upstream_cidrnetmask, "brupstream"
)
self.logger.out("Releasing read lock for synchronization phase C", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase C", state="o")
# Synchronize nodes D (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase D", state="i")
lock.acquire()
self.logger.out("Acquired read lock for synchronization phase D", state="o")
# 6. Remove Cluster & Storage floating IP
self.logger.out(
"Removing floating management IP {}/{} from interface {}".format(
self.cluster_floatingipaddr, self.cluster_cidrnetmask, "brcluster"
),
state="o",
)
common.removeIPAddress(
self.cluster_floatingipaddr, self.cluster_cidrnetmask, "brcluster"
)
self.logger.out(
"Removing floating storage IP {}/{} from interface {}".format(
self.storage_floatingipaddr, self.storage_cidrnetmask, "brstorage"
),
state="o",
)
common.removeIPAddress(
self.storage_floatingipaddr, self.storage_cidrnetmask, "brstorage"
)
self.logger.out("Releasing read lock for synchronization phase D", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase D", state="o")
# Synchronize nodes E (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase E", state="i")
lock.acquire()
self.logger.out("Acquired read lock for synchronization phase E", state="o")
# 7. Remove Metadata link-local IP
self.logger.out(
"Removing Metadata link-local IP {}/{} from interface {}".format(
"169.254.169.254", "32", "lo"
),
state="o",
)
common.removeIPAddress("169.254.169.254", "32", "lo")
self.logger.out("Releasing read lock for synchronization phase E", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase E", state="o")
# Synchronize nodes F (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase F", state="i")
lock.acquire()
self.logger.out("Acquired read lock for synchronization phase F", state="o")
# 8. Remove gateway IPs
for network in self.d_network:
self.d_network[network].removeGateways()
self.logger.out("Releasing read lock for synchronization phase F", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase F", state="o")
# Synchronize nodes G (I am reader)
lock = self.zkhandler.readlock("base.config.primary_node.sync_lock")
self.logger.out("Acquiring read lock for synchronization phase G", state="i")
try:
lock.acquire(timeout=60) # Don't wait forever and completely block us
self.logger.out("Acquired read lock for synchronization phase G", state="o")
except Exception:
pass
self.logger.out("Releasing read lock for synchronization phase G", state="i")
lock.release()
self.logger.out("Released read lock for synchronization phase G", state="o")
# Wait 2 seconds for everything to stabilize before we declare all-done
time.sleep(2)
self.zkhandler.write([(("node.state.router", self.name), "secondary")])
self.logger.out(
"Node {} transitioned to secondary state".format(self.name), state="o"
)
# Flush all VMs on the host
def flush(self):
# Begin flush
self.logger.out(
'Flushing node "{}" of running VMs'.format(self.name), state="i"
)
self.logger.out("VM list: {}".format(", ".join(self.domain_list)), state="i")
fixed_domain_list = self.domain_list.copy()
for dom_uuid in fixed_domain_list:
# Allow us to cancel the operation
if self.flush_stopper:
self.logger.out("Aborting node flush", state="i")
self.flush_event.set()
self.flush_thread = None
self.flush_stopper = False
return
# Wait for a VM in "restart" or "shutdown" state to complete transition
while self.zkhandler.read(("domain.state", dom_uuid)) in [
"restart",
"shutdown",
]:
self.logger.out(
'Waiting 2s for VM state change completion for VM "{}"'.format(
dom_uuid
),
state="i",
)
time.sleep(2)
self.logger.out(
'Selecting target to migrate VM "{}"'.format(dom_uuid), state="i"
)
# Don't replace the previous node if the VM is already migrated
if self.zkhandler.read(("domain.last_node", dom_uuid)):
current_node = self.zkhandler.read(("domain.last_node", dom_uuid))
else:
current_node = self.zkhandler.read(("domain.node", dom_uuid))
target_node = common.findTargetNode(self.zkhandler, dom_uuid)
if target_node == current_node:
target_node = None
if target_node is None:
self.logger.out(
'Failed to find migration target for running VM "{}"; shutting down and setting autostart flag'.format(
dom_uuid
),
state="e",
)
if self.zkhandler.read(("domain.state", dom_uuid)) in ["start"]:
self.zkhandler.write(
[
(("domain.state", dom_uuid), "shutdown"),
(("domain.meta.autostart", dom_uuid), "True"),
]
)
else:
self.logger.out(
'Migrating VM "{}" to node "{}"'.format(dom_uuid, target_node),
state="i",
)
self.zkhandler.write(
[
(("domain.state", dom_uuid), "migrate"),
(("domain.node", dom_uuid), target_node),
(("domain.last_node", dom_uuid), current_node),
]
)
# Wait for the VM to migrate so the next VM's free RAM count is accurate (they migrate in serial anyways)
ticks = 0
self.logger.out(
'Waiting for migration of VM "{}"'.format(dom_uuid), state="i"
)
while self.zkhandler.read(("domain.state", dom_uuid)) in [
"migrate",
"unmigrate",
"shutdown",
]:
ticks += 1
if ticks > 600:
# Abort if we've waited for 120 seconds, the VM is messed and just continue
break
time.sleep(0.2)
self.zkhandler.write(
[
(("node.running_domains", self.name), ""),
(("node.state.domain", self.name), "flushed"),
]
)
self.flush_thread = None
self.flush_stopper = False
return
def unflush(self):
self.logger.out(
"Restoring node {} to active service.".format(self.name), state="i"
)
fixed_domain_list = self.d_domain.copy()
for dom_uuid in fixed_domain_list:
# Allow us to cancel the operation
if self.flush_stopper:
self.logger.out("Aborting node unflush", state="i")
self.flush_event.set()
self.flush_thread = None
self.flush_stopper = False
return
# Handle autostarts
autostart = self.zkhandler.read(("domain.meta.autostart", dom_uuid))
node = self.zkhandler.read(("domain.node", dom_uuid))
if autostart == "True" and node == self.name:
self.logger.out(
'Starting autostart VM "{}"'.format(dom_uuid), state="i"
)
self.zkhandler.write(
[
(("domain.state", dom_uuid), "start"),
(("domain.node", dom_uuid), self.name),
(("domain.last_node", dom_uuid), ""),
(("domain.meta.autostart", dom_uuid), "False"),
]
)
continue
try:
last_node = self.zkhandler.read(("domain.last_node", dom_uuid))
except Exception:
continue
if last_node != self.name:
continue
self.logger.out(
'Setting unmigration for VM "{}"'.format(dom_uuid), state="i"
)
self.zkhandler.write(
[
(("domain.state", dom_uuid), "migrate"),
(("domain.node", dom_uuid), self.name),
(("domain.last_node", dom_uuid), ""),
]
)
# Wait for the VM to migrate back
ticks = 0
self.logger.out(
'Waiting for migration of VM "{}"'.format(dom_uuid), state="i"
)
while self.zkhandler.read(("domain.state", dom_uuid)) in [
"migrate",
"unmigrate",
"shutdown",
]:
ticks += 1
if ticks > 600:
# Abort if we've waited for 120 seconds, the VM is messed and just continue
break
time.sleep(0.2)
self.zkhandler.write([(("node.state.domain", self.name), "ready")])
self.flush_thread = None
self.flush_stopper = False
return