pvc/daemon-common/cluster.py

2054 lines
77 KiB
Python

#!/usr/bin/env python3
# cluster.py - PVC client function library, cluster management
# Part of the Parallel Virtual Cluster (PVC) system
#
# Copyright (C) 2018-2024 Joshua M. Boniface <joshua@boniface.me>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
from distutils.util import strtobool
from json import loads
import daemon_lib.common as common
import daemon_lib.faults as faults
import daemon_lib.node as pvc_node
import daemon_lib.vm as pvc_vm
import daemon_lib.ceph as pvc_ceph
# import daemon_lib.osd as pvc_osd
def set_maintenance(zkhandler, maint_state):
current_maint_state = zkhandler.read("base.config.maintenance")
if maint_state == current_maint_state:
if maint_state == "true":
return True, "Cluster is already in maintenance mode"
else:
return True, "Cluster is already in normal mode"
if maint_state == "true":
zkhandler.write([("base.config.maintenance", "true")])
return True, "Successfully set cluster in maintenance mode"
else:
zkhandler.write([("base.config.maintenance", "false")])
return True, "Successfully set cluster in normal mode"
def getClusterHealthFromFaults(zkhandler, faults_list):
unacknowledged_faults = [fault for fault in faults_list if fault["status"] != "ack"]
# Generate total cluster health numbers
cluster_health_value = 100
cluster_health_messages = list()
for fault in sorted(
unacknowledged_faults,
key=lambda x: (x["health_delta"], x["last_reported"]),
reverse=True,
):
cluster_health_value -= fault["health_delta"]
message = {
"id": fault["id"],
"health_delta": fault["health_delta"],
"text": fault["message"],
}
cluster_health_messages.append(message)
if cluster_health_value < 0:
cluster_health_value = 0
cluster_health = {
"health": cluster_health_value,
"messages": cluster_health_messages,
}
return cluster_health
def getClusterHealth(zkhandler, node_list, vm_list, ceph_osd_list):
health_delta_map = {
"node_stopped": 50,
"node_flushed": 10,
"vm_stopped": 10,
"osd_out": 50,
"osd_down": 10,
"osd_full": 50,
"osd_nearfull": 10,
"memory_overprovisioned": 50,
"ceph_err": 50,
"ceph_warn": 10,
}
# Generate total cluster health numbers
cluster_health_value = 100
cluster_health_messages = list()
for index, node in enumerate(node_list):
# Apply node health values to total health number
try:
node_health_int = int(node["health"])
except Exception:
node_health_int = 100
cluster_health_value -= 100 - node_health_int
for entry in node["health_details"]:
if entry["health_delta"] > 0:
cluster_health_messages.append(
f"{node['name']}: plugin '{entry['name']}': {entry['message']}"
)
# Handle unhealthy node states
if node["daemon_state"] not in ["run"]:
cluster_health_value -= health_delta_map["node_stopped"]
cluster_health_messages.append(
f"cluster: Node {node['name']} in {node['daemon_state'].upper()} daemon state"
)
elif node["domain_state"] not in ["ready"]:
cluster_health_value -= health_delta_map["node_flushed"]
cluster_health_messages.append(
f"cluster: Node {node['name']} in {node['domain_state'].upper()} domain state"
)
for index, vm in enumerate(vm_list):
# Handle unhealthy VM states
if vm["state"] in ["stop", "fail"]:
cluster_health_value -= health_delta_map["vm_stopped"]
cluster_health_messages.append(
f"cluster: VM {vm['name']} in {vm['state'].upper()} state"
)
for index, ceph_osd in enumerate(ceph_osd_list):
in_texts = {1: "in", 0: "out"}
up_texts = {1: "up", 0: "down"}
# Handle unhealthy OSD states
if in_texts[ceph_osd["stats"]["in"]] not in ["in"]:
cluster_health_value -= health_delta_map["osd_out"]
cluster_health_messages.append(
f"cluster: Ceph OSD {ceph_osd['id']} in {in_texts[ceph_osd['stats']['in']].upper()} state"
)
elif up_texts[ceph_osd["stats"]["up"]] not in ["up"]:
cluster_health_value -= health_delta_map["osd_down"]
cluster_health_messages.append(
f"cluster: Ceph OSD {ceph_osd['id']} in {up_texts[ceph_osd['stats']['up']].upper()} state"
)
# Handle full or nearfull OSDs (>85%)
if ceph_osd["stats"]["utilization"] >= 90:
cluster_health_value -= health_delta_map["osd_full"]
cluster_health_messages.append(
f"cluster: Ceph OSD {ceph_osd['id']} is FULL ({ceph_osd['stats']['utilization']:.1f}% > 90%)"
)
elif ceph_osd["stats"]["utilization"] >= 85:
cluster_health_value -= health_delta_map["osd_nearfull"]
cluster_health_messages.append(
f"cluster: Ceph OSD {ceph_osd['id']} is NEARFULL ({ceph_osd['stats']['utilization']:.1f}% > 85%)"
)
# Check for (n-1) overprovisioning
# Assume X nodes. If the total VM memory allocation (counting only running VMss) is greater than
# the total memory of the (n-1) smallest nodes, trigger this warning.
n_minus_1_total = 0
alloc_total = 0
node_largest_index = None
node_largest_count = 0
for index, node in enumerate(node_list):
node_mem_total = node["memory"]["total"]
node_mem_alloc = node["memory"]["allocated"]
alloc_total += node_mem_alloc
# Determine if this node is the largest seen so far
if node_mem_total > node_largest_count:
node_largest_index = index
node_largest_count = node_mem_total
n_minus_1_node_list = list()
for index, node in enumerate(node_list):
if index == node_largest_index:
continue
n_minus_1_node_list.append(node)
for index, node in enumerate(n_minus_1_node_list):
n_minus_1_total += node["memory"]["total"]
if alloc_total > n_minus_1_total:
cluster_health_value -= health_delta_map["memory_overprovisioned"]
cluster_health_messages.append(
f"cluster: Total memory is OVERPROVISIONED ({alloc_total} > {n_minus_1_total} @ N-1)"
)
# Check Ceph cluster health
ceph_health = loads(zkhandler.read("base.storage.health"))
ceph_health_status = ceph_health["status"]
ceph_health_entries = ceph_health["checks"].keys()
ceph_health_status_map = {
"HEALTH_ERR": "ERROR",
"HEALTH_WARN": "WARNING",
}
for entry in ceph_health_entries:
cluster_health_messages.append(
f"cluster: Ceph {ceph_health_status_map[ceph_health['checks'][entry]['severity']]} {entry}: {ceph_health['checks'][entry]['summary']['message']}"
)
if ceph_health_status == "HEALTH_ERR":
cluster_health_value -= health_delta_map["ceph_err"]
elif ceph_health_status == "HEALTH_WARN":
cluster_health_value -= health_delta_map["ceph_warn"]
if cluster_health_value < 0:
cluster_health_value = 0
cluster_health = {
"health": cluster_health_value,
"messages": cluster_health_messages,
}
return cluster_health
def getNodeHealth(zkhandler, node_list):
# Get the health state of all nodes
node_health_reads = list()
for node in node_list:
node_health_reads += [
("node.monitoring.health", node),
("node.monitoring.plugins", node),
]
all_node_health_details = zkhandler.read_many(node_health_reads)
# Parse out the Node health details
node_health = dict()
for nidx, node in enumerate(node_list):
# Split the large list of return values by the IDX of this node
# Each node result is 2 fields long
pos_start = nidx * 2
pos_end = nidx * 2 + 2
node_health_value, node_health_plugins = tuple(
all_node_health_details[pos_start:pos_end]
)
node_health_details = pvc_node.getNodeHealthDetails(
zkhandler, node, node_health_plugins.split()
)
node_health_messages = list()
for entry in node_health_details:
if entry["health_delta"] > 0:
node_health_messages.append(f"'{entry['name']}': {entry['message']}")
try:
node_health_value = int(node_health_value)
except Exception:
pass
node_health_entry = {
"health": node_health_value,
"messages": node_health_messages,
}
node_health[node] = node_health_entry
return node_health
def getClusterInformation(zkhandler):
# Get cluster maintenance state
maintenance_state = zkhandler.read("base.config.maintenance")
# Prepare cluster total values
cluster_total_node_memory = 0
cluster_total_used_memory = 0
cluster_total_free_memory = 0
cluster_total_allocated_memory = 0
cluster_total_provisioned_memory = 0
cluster_total_average_memory_utilization = 0
cluster_total_cpu_cores = 0
cluster_total_cpu_load = 0
cluster_total_average_cpu_utilization = 0
cluster_total_allocated_cores = 0
cluster_total_osd_space = 0
cluster_total_used_space = 0
cluster_total_free_space = 0
cluster_total_average_osd_utilization = 0
# Get primary node
maintenance_state, primary_node = zkhandler.read_many(
[
("base.config.maintenance"),
("base.config.primary_node"),
]
)
# Get PVC version of primary node
pvc_version = zkhandler.read(("node.data.pvc_version", primary_node))
# Get the list of Nodes
node_list = zkhandler.children("base.node")
node_count = len(node_list)
# Get the information of all Nodes
node_state_reads = list()
node_memory_reads = list()
node_cpu_reads = list()
for node in node_list:
node_state_reads += [
("node.state.daemon", node),
("node.state.domain", node),
]
node_memory_reads += [
("node.memory.total", node),
("node.memory.used", node),
("node.memory.free", node),
("node.memory.allocated", node),
("node.memory.provisioned", node),
]
node_cpu_reads += [
("node.data.static", node),
("node.vcpu.allocated", node),
("node.cpu.load", node),
]
all_node_states = zkhandler.read_many(node_state_reads)
all_node_memory = zkhandler.read_many(node_memory_reads)
all_node_cpu = zkhandler.read_many(node_cpu_reads)
# Parse out the Node states
node_data = list()
formatted_node_states = {"total": node_count}
for nidx, node in enumerate(node_list):
# Split the large list of return values by the IDX of this node (states)
# Each node result is 2 fields long
pos_start = nidx * 2
pos_end = nidx * 2 + 2
node_daemon_state, node_domain_state = tuple(all_node_states[pos_start:pos_end])
node_data.append(
{
"name": node,
"daemon_state": node_daemon_state,
"domain_state": node_domain_state,
}
)
node_state = f"{node_daemon_state},{node_domain_state}"
# Add to the count for this node's state
if node_state in common.node_state_combinations:
if formatted_node_states.get(node_state) is not None:
formatted_node_states[node_state] += 1
else:
formatted_node_states[node_state] = 1
# Split the large list of return values by the IDX of this node (memory)
# Each node result is 5 fields long
pos_start = nidx * 5
pos_end = nidx * 5 + 5
(
node_memory_total,
node_memory_used,
node_memory_free,
node_memory_allocated,
node_memory_provisioned,
) = tuple(all_node_memory[pos_start:pos_end])
cluster_total_node_memory += int(node_memory_total)
cluster_total_used_memory += int(node_memory_used)
cluster_total_free_memory += int(node_memory_free)
cluster_total_allocated_memory += int(node_memory_allocated)
cluster_total_provisioned_memory += int(node_memory_provisioned)
# Split the large list of return values by the IDX of this node (cpu)
# Each nod result is 3 fields long
pos_start = nidx * 3
pos_end = nidx * 3 + 3
node_static_data, node_vcpu_allocated, node_cpu_load = tuple(
all_node_cpu[pos_start:pos_end]
)
cluster_total_cpu_cores += int(node_static_data.split()[0])
cluster_total_cpu_load += round(float(node_cpu_load), 2)
cluster_total_allocated_cores += int(node_vcpu_allocated)
cluster_total_average_memory_utilization = (
(round((cluster_total_used_memory / cluster_total_node_memory) * 100, 2))
if cluster_total_node_memory > 0
else 0.00
)
cluster_total_average_cpu_utilization = (
(round((cluster_total_cpu_load / cluster_total_cpu_cores) * 100, 2))
if cluster_total_cpu_cores > 0
else 0.00
)
# Get the list of VMs
vm_list = zkhandler.children("base.domain")
vm_count = len(vm_list)
# Get the states of all VMs
vm_state_reads = list()
for vm in vm_list:
vm_state_reads += [
("domain", vm),
("domain.state", vm),
]
all_vm_states = zkhandler.read_many(vm_state_reads)
# Parse out the VM states
vm_data = list()
formatted_vm_states = {"total": vm_count}
for vidx, vm in enumerate(vm_list):
# Split the large list of return values by the IDX of this VM
# Each VM result is 2 field long
pos_start = vidx * 2
pos_end = vidx * 2 + 2
vm_name, vm_state = tuple(all_vm_states[pos_start:pos_end])
vm_data.append(
{
"uuid": vm,
"name": vm_name,
"state": vm_state,
}
)
# Add to the count for this VM's state
if vm_state in common.vm_state_combinations:
if formatted_vm_states.get(vm_state) is not None:
formatted_vm_states[vm_state] += 1
else:
formatted_vm_states[vm_state] = 1
# Get the list of Ceph OSDs
ceph_osd_list = zkhandler.children("base.osd")
ceph_osd_count = len(ceph_osd_list)
# Get the states of all OSDs ("stat" is not a typo since we're reading stats; states are in
# the stats JSON object)
osd_stat_reads = list()
for osd in ceph_osd_list:
osd_stat_reads += [("osd.stats", osd)]
all_osd_stats = zkhandler.read_many(osd_stat_reads)
# Parse out the OSD states
osd_data = list()
formatted_osd_states = {"total": ceph_osd_count}
up_texts = {1: "up", 0: "down"}
in_texts = {1: "in", 0: "out"}
for oidx, osd in enumerate(ceph_osd_list):
# Split the large list of return values by the IDX of this OSD
# Each OSD result is 1 field long, so just use the IDX
_osd_stats = all_osd_stats[oidx]
# We have to load this JSON object and get our up/in states from it
osd_stats = loads(_osd_stats)
# Get our states
osd_up = up_texts[osd_stats["up"]]
osd_in = in_texts[osd_stats["in"]]
osd_data.append(
{
"id": osd,
"up": osd_up,
"in": osd_in,
}
)
osd_state = f"{osd_up},{osd_in}"
# Add to the count for this OSD's state
if osd_state in common.ceph_osd_state_combinations:
if formatted_osd_states.get(osd_state) is not None:
formatted_osd_states[osd_state] += 1
else:
formatted_osd_states[osd_state] = 1
# Add the OSD utilization
cluster_total_osd_space += int(osd_stats["kb"])
cluster_total_used_space += int(osd_stats["kb_used"])
cluster_total_free_space += int(osd_stats["kb_avail"])
cluster_total_average_osd_utilization += float(osd_stats["utilization"])
cluster_total_average_osd_utilization = (
(round(cluster_total_average_osd_utilization / len(ceph_osd_list), 2))
if ceph_osd_list
else 0.00
)
# Get the list of Networks
network_list = zkhandler.children("base.network")
network_count = len(network_list)
# Get the list of Ceph pools
ceph_pool_list = zkhandler.children("base.pool")
ceph_pool_count = len(ceph_pool_list)
# Get the list of Ceph volumes
ceph_volume_list = list()
for pool in ceph_pool_list:
ceph_volume_list_pool = zkhandler.children(("volume", pool))
if ceph_volume_list_pool is not None:
ceph_volume_list += [f"{pool}/{volume}" for volume in ceph_volume_list_pool]
ceph_volume_count = len(ceph_volume_list)
# Get the list of Ceph snapshots
ceph_snapshot_list = list()
for volume in ceph_volume_list:
ceph_snapshot_list_volume = zkhandler.children(("snapshot", volume))
if ceph_snapshot_list_volume is not None:
ceph_snapshot_list += [
f"{volume}@{snapshot}" for snapshot in ceph_snapshot_list_volume
]
ceph_snapshot_count = len(ceph_snapshot_list)
# Get the list of faults
faults_data = faults.getAllFaults(zkhandler)
# Format the status data
cluster_information = {
"cluster_health": getClusterHealthFromFaults(zkhandler, faults_data),
"node_health": getNodeHealth(zkhandler, node_list),
"maintenance": maintenance_state,
"primary_node": primary_node,
"pvc_version": pvc_version,
"upstream_ip": zkhandler.read("base.config.upstream_ip"),
"nodes": formatted_node_states,
"vms": formatted_vm_states,
"networks": network_count,
"osds": formatted_osd_states,
"pools": ceph_pool_count,
"volumes": ceph_volume_count,
"snapshots": ceph_snapshot_count,
"resources": {
"memory": {
"total": cluster_total_node_memory,
"free": cluster_total_free_memory,
"used": cluster_total_used_memory,
"allocated": cluster_total_allocated_memory,
"provisioned": cluster_total_provisioned_memory,
"utilization": cluster_total_average_memory_utilization,
},
"cpu": {
"total": cluster_total_cpu_cores,
"load": cluster_total_cpu_load,
"allocated": cluster_total_allocated_cores,
"utilization": cluster_total_average_cpu_utilization,
},
"disk": {
"total": cluster_total_osd_space,
"used": cluster_total_used_space,
"free": cluster_total_free_space,
"utilization": cluster_total_average_osd_utilization,
},
},
"detail": {
"node": node_data,
"vm": vm_data,
"osd": osd_data,
"faults": faults_data,
},
}
return cluster_information
def get_info(zkhandler):
# This is a thin wrapper function for naming purposes
cluster_information = getClusterInformation(zkhandler)
if cluster_information:
return True, cluster_information
else:
return False, "ERROR: Failed to obtain cluster information!"
def get_health_metrics(zkhandler):
"""
Get health-related metrics from the PVC cluster
"""
status_retflag, status_data = get_info(zkhandler)
if not status_retflag:
return False, "Error: Status data threw error"
faults_data = status_data["detail"]["faults"]
node_data = status_data["detail"]["node"]
vm_data = status_data["detail"]["vm"]
osd_data = status_data["detail"]["osd"]
output_lines = list()
output_lines.append("# HELP pvc_info PVC cluster information")
output_lines.append("# TYPE pvc_info gauge")
output_lines.append(
f"pvc_info{{primary_node=\"{status_data['primary_node']}\", version=\"{status_data['pvc_version']}\", upstream_ip=\"{status_data['upstream_ip']}\"}} 1"
)
output_lines.append("# HELP pvc_cluster_maintenance PVC cluster maintenance state")
output_lines.append("# TYPE pvc_cluster_maintenance gauge")
output_lines.append(
f"pvc_cluster_maintenance {1 if bool(strtobool(status_data['maintenance'])) else 0}"
)
output_lines.append("# HELP pvc_cluster_health PVC cluster health status")
output_lines.append("# TYPE pvc_cluster_health gauge")
output_lines.append(f"pvc_cluster_health {status_data['cluster_health']['health']}")
output_lines.append("# HELP pvc_cluster_faults PVC cluster new faults")
output_lines.append("# TYPE pvc_cluster_faults gauge")
fault_map = dict()
for fault_type in common.fault_state_combinations:
fault_map[fault_type] = 0
for fault in faults_data:
fault_map[fault["status"]] += 1
for fault_type in fault_map:
output_lines.append(
f'pvc_cluster_faults{{status="{fault_type}"}} {fault_map[fault_type]}'
)
# output_lines.append("# HELP pvc_cluster_faults PVC cluster health faults")
# output_lines.append("# TYPE pvc_cluster_faults gauge")
# for fault_msg in status_data["cluster_health"]["messages"]:
# output_lines.append(
# f"pvc_cluster_faults{{id=\"{fault_msg['id']}\", message=\"{fault_msg['text']}\"}} {fault_msg['health_delta']}"
# )
output_lines.append("# HELP pvc_node_health PVC cluster node health status")
output_lines.append("# TYPE pvc_node_health gauge")
for node in status_data["node_health"]:
node_health = status_data["node_health"][node]["health"]
if isinstance(node_health, (int, float)):
output_lines.append(f'pvc_node_health{{node="{node}"}} {node_health}')
output_lines.append("# HELP pvc_node_daemon_states PVC Node daemon state counts")
output_lines.append("# TYPE pvc_node_daemon_states gauge")
node_daemon_state_map = dict()
for state in set([s.split(",")[0] for s in common.node_state_combinations]):
node_daemon_state_map[state] = 0
for node in node_data:
node_daemon_state_map[node["daemon_state"]] += 1
for state in node_daemon_state_map:
output_lines.append(
f'pvc_node_daemon_states{{state="{state}"}} {node_daemon_state_map[state]}'
)
output_lines.append("# HELP pvc_node_domain_states PVC Node domain state counts")
output_lines.append("# TYPE pvc_node_domain_states gauge")
node_domain_state_map = dict()
for state in set([s.split(",")[1] for s in common.node_state_combinations]):
node_domain_state_map[state] = 0
for node in node_data:
node_domain_state_map[node["domain_state"]] += 1
for state in node_domain_state_map:
output_lines.append(
f'pvc_node_domain_states{{state="{state}"}} {node_domain_state_map[state]}'
)
output_lines.append("# HELP pvc_vm_states PVC VM state counts")
output_lines.append("# TYPE pvc_vm_states gauge")
vm_state_map = dict()
for state in set(common.vm_state_combinations):
vm_state_map[state] = 0
for vm in vm_data:
vm_state_map[vm["state"]] += 1
for state in vm_state_map:
output_lines.append(f'pvc_vm_states{{state="{state}"}} {vm_state_map[state]}')
output_lines.append("# HELP pvc_ceph_osd_up_states PVC OSD up state counts")
output_lines.append("# TYPE pvc_ceph_osd_up_states gauge")
osd_up_state_map = dict()
for state in set([s.split(",")[0] for s in common.ceph_osd_state_combinations]):
osd_up_state_map[state] = 0
for osd in osd_data:
if osd["up"] == "up":
osd_up_state_map["up"] += 1
else:
osd_up_state_map["down"] += 1
for state in osd_up_state_map:
output_lines.append(
f'pvc_ceph_osd_up_states{{state="{state}"}} {osd_up_state_map[state]}'
)
output_lines.append("# HELP pvc_ceph_osd_in_states PVC OSD in state counts")
output_lines.append("# TYPE pvc_ceph_osd_in_states gauge")
osd_in_state_map = dict()
for state in set([s.split(",")[1] for s in common.ceph_osd_state_combinations]):
osd_in_state_map[state] = 0
for osd in osd_data:
if osd["in"] == "in":
osd_in_state_map["in"] += 1
else:
osd_in_state_map["out"] += 1
for state in osd_in_state_map:
output_lines.append(
f'pvc_ceph_osd_in_states{{state="{state}"}} {osd_in_state_map[state]}'
)
output_lines.append("# HELP pvc_nodes PVC Node count")
output_lines.append("# TYPE pvc_nodes gauge")
output_lines.append(f"pvc_nodes {status_data['nodes']['total']}")
output_lines.append("# HELP pvc_vms PVC VM count")
output_lines.append("# TYPE pvc_vms gauge")
output_lines.append(f"pvc_vms {status_data['vms']['total']}")
output_lines.append("# HELP pvc_osds PVC OSD count")
output_lines.append("# TYPE pvc_osds gauge")
output_lines.append(f"pvc_osds {status_data['osds']['total']}")
output_lines.append("# HELP pvc_networks PVC Network count")
output_lines.append("# TYPE pvc_networks gauge")
output_lines.append(f"pvc_networks {status_data['networks']}")
output_lines.append("# HELP pvc_pools PVC Storage Pool count")
output_lines.append("# TYPE pvc_pools gauge")
output_lines.append(f"pvc_pools {status_data['pools']}")
output_lines.append("# HELP pvc_volumes PVC Storage Volume count")
output_lines.append("# TYPE pvc_volumes gauge")
output_lines.append(f"pvc_volumes {status_data['volumes']}")
output_lines.append("# HELP pvc_snapshots PVC Storage Snapshot count")
output_lines.append("# TYPE pvc_snapshots gauge")
output_lines.append(f"pvc_snapshots {status_data['snapshots']}")
return True, "\n".join(output_lines) + "\n"
def get_resource_metrics(zkhandler):
"""
Get resource-related metrics from the PVC cluster (except Ceph metrics)
"""
node_retflag, node_data = pvc_node.get_list(zkhandler)
if not node_retflag:
return False, "Error: Node data threw error"
vm_retflag, vm_data = pvc_vm.get_list(zkhandler)
if not vm_retflag:
return False, "Error: VM data threw error"
osd_retflag, osd_data = pvc_ceph.get_list_osd(zkhandler)
if not osd_retflag:
return False, "Error: OSD data threw error"
pool_retflag, pool_data = pvc_ceph.get_list_pool(zkhandler)
if not pool_retflag:
return False, "Error: Pool data threw error"
output_lines = list()
#
# Network Utilization stats
#
# This is a bit of a doozie. First, for each node, we have to determine the % utilization
# of all the (active) network interface on that node, averaged together. Then we average
# the values of all the nodes together.
# This is very rough, but should give some idea as to the total network bandwidth used
# and available.
all_total_speed = 0
all_total_util = 0
all_total_count = 0
per_node_network_utilization = dict()
for node in node_data:
if node["daemon_state"] != "run":
continue
total_speed = 0
total_util = 0
total_count = 0
for iface in node["interfaces"].keys():
link_state = node["interfaces"][iface]["state"]
if link_state != "up":
continue
link_speed = node["interfaces"][iface]["link_speed"] * 2 # full-duplex
total_speed += link_speed
total_bps = node["interfaces"][iface]["total_bps"]
total_util += total_bps
total_count += 1
if total_count > 0:
# Average the speed and util by the count
avg_speed = float(total_speed / total_count)
all_total_speed += avg_speed
avg_util = float(total_util / total_count)
all_total_util += avg_util
all_total_count += 1
per_node_network_utilization[node["name"]] = avg_util / avg_speed * 100
else:
per_node_network_utilization[node["name"]] = 0.0
if all_total_count > 0:
all_avg_speed = all_total_speed / all_total_count
all_avg_util = all_total_util / all_total_count
used_network_percentage = all_avg_util / all_avg_speed * 100
else:
used_network_percentage = 0
#
# Cluster stats
#
output_lines.append(
"# HELP pvc_cluster_cpu_utilization PVC cluster CPU utilization percentage (n-1)"
)
output_lines.append("# TYPE pvc_cluster_cpu_utilization gauge")
node_sorted_cpu = [
n["cpu_count"]
for n in sorted(node_data, key=lambda n: n["cpu_count"], reverse=False)
]
total_cpu = sum(node_sorted_cpu[:-1])
used_cpu = sum([n["load"] for n in node_data])
used_cpu_percentage = used_cpu / total_cpu * 100
output_lines.append(f"pvc_cluster_cpu_utilization {used_cpu_percentage:2.2f}")
output_lines.append(
"# HELP pvc_cluster_network_utilization PVC cluster network utilization percentage"
)
output_lines.append("# TYPE pvc_cluster_network_utilization gauge")
output_lines.append(
f"pvc_cluster_network_utilization {used_network_percentage:2.2f}"
)
node_sorted_memory = [
n["memory"]["total"]
for n in sorted(node_data, key=lambda n: n["memory"]["total"], reverse=False)
]
total_memory = sum(node_sorted_memory[:-1])
used_memory = sum([n["memory"]["used"] for n in node_data])
used_memory_percentage = used_memory / total_memory * 100
output_lines.append(
"# HELP pvc_cluster_memory_real_utilization PVC cluster real memory utilization percentage (n-1)"
)
output_lines.append("# TYPE pvc_cluster_memory_real_utilization gauge")
output_lines.append(
f"pvc_cluster_memory_real_utilization {used_memory_percentage:2.2f}"
)
allocated_memory = sum([n["memory"]["allocated"] for n in node_data])
allocated_memory_percentage = allocated_memory / total_memory * 100
output_lines.append(
"# HELP pvc_cluster_memory_allocated_utilization PVC cluster allocated memory utilization percentage (n-1)"
)
output_lines.append("# TYPE pvc_cluster_memory_allocated_utilization gauge")
output_lines.append(
f"pvc_cluster_memory_allocated_utilization {allocated_memory_percentage:2.2f}"
)
provisioned_memory = sum([n["memory"]["provisioned"] for n in node_data])
provisioned_memory_percentage = provisioned_memory / total_memory * 100
output_lines.append(
"# HELP pvc_cluster_memory_provisioned_utilization PVC cluster provisioned memory utilization percentage (n-1)"
)
output_lines.append("# TYPE pvc_cluster_memory_provisioned_utilization gauge")
output_lines.append(
f"pvc_cluster_memory_provisioned_utilization {provisioned_memory_percentage:2.2f}"
)
output_lines.append(
"# HELP pvc_cluster_disk_utilization PVC cluster disk utilization percentage (n-2)"
)
output_lines.append("# TYPE pvc_cluster_disk_utilization gauge")
# Do it manually rather than a sum() in case one OSD is not fully up yet
total_disk = 0
used_disk = 0
for osd in osd_data:
try:
total_disk += osd["stats"]["kb"]
used_disk += osd["stats"]["kb_used"]
except Exception:
continue
used_disk_percentage = used_disk / total_disk * 100
output_lines.append(f"pvc_cluster_disk_utilization {used_disk_percentage:2.2f}")
#
# Node stats
#
output_lines.append("# HELP pvc_node_host_cpus PVC node host CPU count")
output_lines.append("# TYPE pvc_node_host_cpus gauge")
for node in node_data:
total_cpus = (
node["vcpu"]["total"]
if isinstance(node["vcpu"]["total"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_host_cpus{{node=\"{node['name']}\"}} {total_cpus}"
)
output_lines.append("# HELP pvc_node_allocated_vcpus PVC node allocated vCPU count")
output_lines.append("# TYPE pvc_node_allocated_vcpus gauge")
for node in node_data:
allocated_cpus = (
node["vcpu"]["allocated"]
if isinstance(node["vcpu"]["allocated"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_allocated_vcpus{{node=\"{node['name']}\"}} {allocated_cpus}"
)
output_lines.append("# HELP pvc_node_load PVC node 1 minute load average")
output_lines.append("# TYPE pvc_node_load gauge")
for node in node_data:
load_average = node["load"] if isinstance(node["load"], (int, float)) else 0.0
output_lines.append(
f"pvc_node_load_average{{node=\"{node['name']}\"}} {load_average}"
)
output_lines.append("# HELP pvc_node_cpu_utilization PVC node CPU utilization")
output_lines.append("# TYPE pvc_node_cpu_utilization gauge")
for node in node_data:
load_average = node["load"] if isinstance(node["load"], (int, float)) else 0.0
cpu_count = (
node["cpu_count"] if isinstance(node["cpu_count"], (int, float)) else 0
)
if cpu_count > 0:
used_cpu_percentage = load_average / cpu_count * 100
else:
used_cpu_percentage = 0.0
output_lines.append(
f"pvc_node_cpu_utilization{{node=\"{node['name']}\"}} {used_cpu_percentage:2.2f}"
)
output_lines.append("# HELP pvc_node_domains_count PVC node running domain count")
output_lines.append("# TYPE pvc_node_domains_count gauge")
for node in node_data:
running_domains_count = (
node["domains_count"]
if isinstance(node["domains_count"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_domains_count{{node=\"{node['name']}\"}} {running_domains_count}"
)
output_lines.append("# HELP pvc_node_architecture PVC node system architecture")
output_lines.append("# TYPE pvc_node_architecture gauge")
for node in node_data:
architecture = node["arch"]
output_lines.append(
f"pvc_node_architecture{{node=\"{node['name']}\",architecture=\"{architecture}\"}} 1"
)
output_lines.append("# HELP pvc_node_kernel PVC node active kernel version")
output_lines.append("# TYPE pvc_node_kernel gauge")
for node in node_data:
kernel = node["kernel"]
output_lines.append(
f"pvc_node_kernel{{node=\"{node['name']}\",kernel=\"{kernel}\"}} 1"
)
output_lines.append(
"# HELP pvc_node_network_traffic_rx PVC node received network traffic"
)
output_lines.append("# TYPE pvc_node_network_traffic_rx gauge")
for node in node_data:
rx_bps = 0
for interface in node["interfaces"].keys():
rx_bps += node["interfaces"][interface]["rx_bps"]
output_lines.append(
f"pvc_node_network_traffic_rx{{node=\"{node['name']}\"}} {rx_bps:2.2f}"
)
output_lines.append(
"# HELP pvc_node_network_traffic_tx PVC node transmitted network traffic"
)
output_lines.append("# TYPE pvc_node_network_traffic_tx gauge")
for node in node_data:
tx_bps = 0
for interface in node["interfaces"].keys():
tx_bps += node["interfaces"][interface]["tx_bps"]
output_lines.append(
f"pvc_node_network_traffic_tx{{node=\"{node['name']}\"}} {tx_bps:2.2f}"
)
output_lines.append(
"# HELP pvc_node_network_packets_rx PVC node received network packets"
)
output_lines.append("# TYPE pvc_node_network_packets_rx gauge")
for node in node_data:
rx_pps = 0
for interface in node["interfaces"].keys():
rx_pps += node["interfaces"][interface]["rx_pps"]
output_lines.append(
f"pvc_node_network_packets_rx{{node=\"{node['name']}\"}} {rx_pps:2.2f}"
)
output_lines.append(
"# HELP pvc_node_network_packets_tx PVC node transmitted network packets"
)
output_lines.append("# TYPE pvc_node_network_packets_tx gauge")
for node in node_data:
tx_pps = 0
for interface in node["interfaces"].keys():
tx_pps += node["interfaces"][interface]["tx_pps"]
output_lines.append(
f"pvc_node_network_packets_tx{{node=\"{node['name']}\"}} {tx_pps:2.2f}"
)
output_lines.append(
"# HELP pvc_node_network_utilization PVC node network utilization percentage"
)
output_lines.append("# TYPE pvc_node_network_utilization gauge")
for node in node_data:
used_network_percentage = per_node_network_utilization.get(node["name"], 0)
output_lines.append(
f"pvc_node_network_utilization{{node=\"{node['name']}\"}} {used_network_percentage:2.2f}"
)
output_lines.append("# HELP pvc_node_total_memory PVC node total memory in MB")
output_lines.append("# TYPE pvc_node_total_memory gauge")
for node in node_data:
total_memory = (
node["memory"]["total"]
if isinstance(node["memory"]["total"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_total_memory{{node=\"{node['name']}\"}} {total_memory}"
)
output_lines.append(
"# HELP pvc_node_allocated_memory PVC node allocated memory in MB"
)
output_lines.append("# TYPE pvc_node_allocated_memory gauge")
for node in node_data:
allocated_memory = (
node["memory"]["allocated"]
if isinstance(node["memory"]["allocated"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_allocated_memory{{node=\"{node['name']}\"}} {allocated_memory}"
)
output_lines.append(
"# HELP pvc_node_allocated_memory_utilization PVC node allocated memory utilization"
)
output_lines.append("# TYPE pvc_node_allocated_memory_utilization gauge")
for node in node_data:
allocated_memory = (
node["memory"]["allocated"]
if isinstance(node["memory"]["allocated"], (int, float))
else 0
)
total_memory = (
node["memory"]["total"]
if isinstance(node["memory"]["total"], (int, float))
else 0
)
allocated_memory_utilization = (
(allocated_memory / total_memory * 100) if total_memory > 0 else 0.0
)
output_lines.append(
f"pvc_node_allocated_memory_utilization{{node=\"{node['name']}\"}} {allocated_memory_utilization}"
)
output_lines.append(
"# HELP pvc_node_provisioned_memory PVC node provisioned memory in MB"
)
output_lines.append("# TYPE pvc_node_provisioned_memory gauge")
for node in node_data:
provisioned_memory = (
node["memory"]["provisioned"]
if isinstance(node["memory"]["provisioned"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_provisioned_memory{{node=\"{node['name']}\"}} {provisioned_memory}"
)
output_lines.append(
"# HELP pvc_node_provisioned_memory_utilization PVC node provisioned memory utilization"
)
output_lines.append("# TYPE pvc_node_provisioned_memory_utilization gauge")
for node in node_data:
provisioned_memory = (
node["memory"]["provisioned"]
if isinstance(node["memory"]["provisioned"], (int, float))
else 0
)
total_memory = (
node["memory"]["total"]
if isinstance(node["memory"]["total"], (int, float))
else 0
)
provisioned_memory_utilization = (
(provisioned_memory / total_memory * 100) if total_memory > 0 else 0.0
)
output_lines.append(
f"pvc_node_provisioned_memory_utilization{{node=\"{node['name']}\"}} {provisioned_memory_utilization}"
)
output_lines.append("# HELP pvc_node_used_memory PVC node used memory in MB")
output_lines.append("# TYPE pvc_node_used_memory gauge")
for node in node_data:
used_memory = (
node["memory"]["used"]
if isinstance(node["memory"]["used"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_used_memory{{node=\"{node['name']}\"}} {used_memory}"
)
output_lines.append(
"# HELP pvc_node_used_memory_utilization PVC node used memory utilization"
)
output_lines.append("# TYPE pvc_node_used_memory_utilization gauge")
for node in node_data:
used_memory = (
node["memory"]["used"]
if isinstance(node["memory"]["used"], (int, float))
else 0
)
total_memory = (
node["memory"]["total"]
if isinstance(node["memory"]["total"], (int, float))
else 0
)
used_memory_utilization = (
(used_memory / total_memory * 100) if total_memory > 0 else 0.0
)
output_lines.append(
f"pvc_node_used_memory_utilization{{node=\"{node['name']}\"}} {used_memory_utilization}"
)
output_lines.append("# HELP pvc_node_free_memory PVC node free memory in MB")
output_lines.append("# TYPE pvc_node_free_memory gauge")
for node in node_data:
free_memory = (
node["memory"]["free"]
if isinstance(node["memory"]["free"], (int, float))
else 0
)
output_lines.append(
f"pvc_node_free_memory{{node=\"{node['name']}\"}} {free_memory}"
)
#
# VM stats
#
output_lines.append("# HELP pvc_vm_uuid PVC VM UUID")
output_lines.append("# TYPE pvc_vm_uuid gauge")
for vm in vm_data:
uuid = vm["uuid"]
output_lines.append(f"pvc_vm_uuid{{vm=\"{vm['name']}\", uuid=\"{uuid}\"}} 1")
output_lines.append("# HELP pvc_vm_description PVC VM description")
output_lines.append("# TYPE pvc_vm_description gauge")
for vm in vm_data:
description = vm["description"]
output_lines.append(
f"pvc_vm_description{{vm=\"{vm['name']}\", description=\"{description}\"}} 1"
)
output_lines.append("# HELP pvc_vm_profile PVC VM profile")
output_lines.append("# TYPE pvc_vm_profile gauge")
for vm in vm_data:
profile = vm["profile"]
output_lines.append(
f"pvc_vm_profile{{vm=\"{vm['name']}\", profile=\"{profile}\"}} 1"
)
output_lines.append("# HELP pvc_vm_state PVC VM state")
output_lines.append("# TYPE pvc_vm_state gauge")
for vm in vm_data:
state_colour_map = {
"start": 0,
"migrate": 1,
"unmigrate": 2,
"provision": 3,
"disable": 4,
"shutdown": 5,
"restart": 6,
"stop": 7,
"fail": 8,
"import": 9,
"restore": 10,
}
state = vm["state"]
output_lines.append(
f"pvc_vm_state{{vm=\"{vm['name']}\", state=\"{state}\"}} {state_colour_map[vm['state']]}"
)
output_lines.append("# HELP pvc_vm_failed_reason PVC VM failed_reason")
output_lines.append("# TYPE pvc_vm_failed_reason gauge")
for vm in vm_data:
failed_reason = vm["failed_reason"] if vm["failed_reason"] else "N/A"
output_lines.append(
f"pvc_vm_failed_reason{{vm=\"{vm['name']}\", failed_reason=\"{failed_reason}\"}} 1"
)
output_lines.append("# HELP pvc_vm_node_limit PVC VM node_limit")
output_lines.append("# TYPE pvc_vm_node_limit gauge")
for vm in vm_data:
node_limit = vm["node_limit"]
output_lines.append(
f"pvc_vm_node_limit{{vm=\"{vm['name']}\", node_limit=\"{node_limit}\"}} 1"
)
output_lines.append("# HELP pvc_vm_node_selector PVC VM node_selector")
output_lines.append("# TYPE pvc_vm_node_selector gauge")
for vm in vm_data:
node_selector = (
"Default"
if vm["node_selector"] is None or vm["node_selector"] == "None"
else vm["node_selector"]
)
output_lines.append(
f"pvc_vm_node_selector{{vm=\"{vm['name']}\", node_selector=\"{node_selector}\"}} 1"
)
output_lines.append("# HELP pvc_vm_node_autostart PVC VM node_autostart")
output_lines.append("# TYPE pvc_vm_node_autostart gauge")
for vm in vm_data:
autostart = vm["node_autostart"]
autostart_val = 1 if vm["node_autostart"] else 0
output_lines.append(
f"pvc_vm_autostart{{vm=\"{vm['name']}\", autostart=\"{autostart}\"}} {autostart_val}"
)
output_lines.append("# HELP pvc_vm_migration_method PVC VM migration_method")
output_lines.append("# TYPE pvc_vm_migration_method gauge")
for vm in vm_data:
migration_method = (
"Default"
if vm["migration_method"] is None or vm["migration_method"] == "None"
else vm["migration_method"]
)
output_lines.append(
f"pvc_vm_migration_method{{vm=\"{vm['name']}\", migration_method=\"{migration_method}\"}} 1"
)
output_lines.append("# HELP pvc_vm_tags PVC VM tags")
output_lines.append("# TYPE pvc_vm_tags gauge")
for vm in vm_data:
tags = [f"tag=\"{t['name']}\"" for t in vm["tags"]]
for tag in tags:
output_lines.append(f"pvc_vm_tags{{vm=\"{vm['name']}\", {tag}}} 1")
output_lines.append("# HELP pvc_vm_active_node PVC VM active node")
output_lines.append("# TYPE pvc_vm_active_node gauge")
for vm in vm_data:
active_node = vm["node"]
output_lines.append(
f"pvc_vm_active_node{{vm=\"{vm['name']}\", node=\"{active_node}\"}} 1"
)
output_lines.append("# HELP pvc_vm_migrated PVC VM migrated state")
output_lines.append("# TYPE pvc_vm_migrated gauge")
for vm in vm_data:
migrated = 0 if vm["migrated"] == "no" else 1
last_node = vm["last_node"] if vm["last_node"] else "No"
output_lines.append(
f"pvc_vm_migrated{{vm=\"{vm['name']}\", last_node=\"{last_node}\"}} {migrated}"
)
output_lines.append("# HELP pvc_vm_machine_type PVC VM machine type")
output_lines.append("# TYPE pvc_vm_machine_type gauge")
for vm in vm_data:
machine_type = vm["machine"]
output_lines.append(
f"pvc_vm_machine_type{{vm=\"{vm['name']}\", machine_type=\"{machine_type}\"}} 1"
)
output_lines.append("# HELP pvc_vm_serial_console PVC VM serial console")
output_lines.append("# TYPE pvc_vm_serial_console gauge")
for vm in vm_data:
output_lines.append(
f"pvc_vm_serial_console{{vm=\"{vm['name']}\"}} {1 if vm.get('console', '') == 'pty' else 0}"
)
output_lines.append("# HELP pvc_vm_vnc_console PVC VM VNC console")
output_lines.append("# TYPE pvc_vm_vnc_console gauge")
for vm in vm_data:
output_lines.append(
f"pvc_vm_vnc_console{{vm=\"{vm['name']}\"}} {1 if vm['vnc'].get('listen', '') == 'pty' else 0}"
)
output_lines.append("# HELP pvc_vm_vnc_listen_address PVC VM VNC listen address")
output_lines.append("# TYPE pvc_vm_vnc_listen_address gauge")
for vm in vm_data:
vnc_listen_address = vm["vnc"]["listen"]
output_lines.append(
f"pvc_vm_vnc_listen_address{{vm=\"{vm['name']}\", address=\"{vnc_listen_address}\"}} {1 if vnc_listen_address is not None else 0}"
)
output_lines.append("# HELP pvc_vm_vnc_listen_port PVC VM VNC listen port")
output_lines.append("# TYPE pvc_vm_vnc_listen_port gauge")
for vm in vm_data:
vnc_listen_port = vm["vnc"]["port"]
output_lines.append(
f"pvc_vm_vnc_listen_port{{vm=\"{vm['name']}\", port=\"{vnc_listen_port}\"}} {1 if vnc_listen_port is not None else 0}"
)
output_lines.append("# HELP pvc_vm_vcpus PVC VM provisioned vCPUs")
output_lines.append("# TYPE pvc_vm_vcpus gauge")
for vm in vm_data:
vcpus = vm["vcpu"]
output_lines.append(f"pvc_vm_vcpus{{vm=\"{vm['name']}\"}} {vcpus}")
output_lines.append("# HELP pvc_vm_vcpu_topology PVC VM vCPU topology")
output_lines.append("# TYPE pvc_vm_vcpu_topology gauge")
for vm in vm_data:
vcpu_topology = vm["vcpu_topology"]
output_lines.append(
f"pvc_vm_vcpu_topology{{vm=\"{vm['name']}\", topology=\"{vcpu_topology}\"}} 1"
)
output_lines.append(
"# HELP pvc_vm_vcpus_cpu_time PVC VM vCPU CPU time milliseconds"
)
output_lines.append("# TYPE pvc_vm_vcpus_cpu_time gauge")
for vm in vm_data:
try:
cpu_time = vm["vcpu_stats"]["cpu_time"] / 1000000
except Exception:
cpu_time = 0
output_lines.append(f"pvc_vm_vcpus_cpu_time{{vm=\"{vm['name']}\"}} {cpu_time}")
output_lines.append(
"# HELP pvc_vm_vcpus_user_time PVC VM vCPU User time milliseconds"
)
output_lines.append("# TYPE pvc_vm_vcpus_user_time gauge")
for vm in vm_data:
try:
user_time = vm["vcpu_stats"]["user_time"] / 1000000
except Exception:
user_time = 0
output_lines.append(
f"pvc_vm_vcpus_user_time{{vm=\"{vm['name']}\"}} {user_time}"
)
output_lines.append(
"# HELP pvc_vm_vcpus_system_time PVC VM vCPU System time milliseconds"
)
output_lines.append("# TYPE pvc_vm_vcpus_system_time gauge")
for vm in vm_data:
try:
system_time = vm["vcpu_stats"]["system_time"] / 1000000
except Exception:
system_time = 0
output_lines.append(
f"pvc_vm_vcpus_system_time{{vm=\"{vm['name']}\"}} {system_time}"
)
output_lines.append("# HELP pvc_vm_memory PVC VM provisioned memory MB")
output_lines.append("# TYPE pvc_vm_memory gauge")
for vm in vm_data:
memory = vm["memory"]
output_lines.append(f"pvc_vm_memory{{vm=\"{vm['name']}\"}} {memory}")
output_lines.append(
"# HELP pvc_vm_memory_stats_actual PVC VM actual memory allocation KB"
)
output_lines.append("# TYPE pvc_vm_memory_stats_actual gauge")
for vm in vm_data:
actual_memory = vm["memory_stats"].get("actual", 0)
output_lines.append(
f"pvc_vm_memory_stats_actual{{vm=\"{vm['name']}\"}} {actual_memory}"
)
output_lines.append("# HELP pvc_vm_memory_stats_rss PVC VM RSS memory KB")
output_lines.append("# TYPE pvc_vm_memory_stats_rss gauge")
for vm in vm_data:
rss_memory = vm["memory_stats"].get("rss", 0)
output_lines.append(
f"pvc_vm_memory_stats_rss{{vm=\"{vm['name']}\"}} {rss_memory}"
)
output_lines.append("# HELP pvc_vm_memory_stats_unused PVC VM unused memory KB")
output_lines.append("# TYPE pvc_vm_memory_stats_unused gauge")
for vm in vm_data:
unused_memory = vm["memory_stats"].get("unused", 0)
output_lines.append(
f"pvc_vm_memory_stats_unused{{vm=\"{vm['name']}\"}} {unused_memory}"
)
output_lines.append(
"# HELP pvc_vm_memory_stats_available PVC VM available memory KB"
)
output_lines.append("# TYPE pvc_vm_memory_stats_available gauge")
for vm in vm_data:
available_memory = vm["memory_stats"].get("available", 0)
output_lines.append(
f"pvc_vm_memory_stats_available{{vm=\"{vm['name']}\"}} {available_memory}"
)
output_lines.append("# HELP pvc_vm_memory_stats_usable PVC VM usable memory KB")
output_lines.append("# TYPE pvc_vm_memory_stats_usable gauge")
for vm in vm_data:
usable_memory = vm["memory_stats"].get("usable", 0)
output_lines.append(
f"pvc_vm_memory_stats_usable{{vm=\"{vm['name']}\"}} {usable_memory}"
)
output_lines.append(
"# HELP pvc_vm_memory_stats_disk_caches PVC VM disk cache memory KB"
)
output_lines.append("# TYPE pvc_vm_memory_stats_disk_caches gauge")
for vm in vm_data:
disk_caches_memory = vm["memory_stats"].get("disk_caches", 0)
output_lines.append(
f"pvc_vm_memory_stats_disk_caches{{vm=\"{vm['name']}\"}} {disk_caches_memory}"
)
output_lines.append("# HELP pvc_vm_memory_swap_in PVC VM memory swap in")
output_lines.append("# TYPE pvc_vm_memory_swap_in gauge")
for vm in vm_data:
swap_in_memory = vm["memory_stats"].get("swap_in", 0)
output_lines.append(
f"pvc_vm_memory_stats_swap_in{{vm=\"{vm['name']}\"}} {swap_in_memory}"
)
output_lines.append("# HELP pvc_vm_memory_swap_out PVC VM memory swap out")
output_lines.append("# TYPE pvc_vm_memory_swap_out gauge")
for vm in vm_data:
swap_out_memory = vm["memory_stats"].get("swap_out", 0)
output_lines.append(
f"pvc_vm_memory_stats_swap_out{{vm=\"{vm['name']}\"}} {swap_out_memory}"
)
output_lines.append("# HELP pvc_vm_memory_major_fault PVC VM memory major faults")
output_lines.append("# TYPE pvc_vm_memory_major_fault gauge")
for vm in vm_data:
major_fault_memory = vm["memory_stats"].get("major_fault", 0)
output_lines.append(
f"pvc_vm_memory_stats_major_fault{{vm=\"{vm['name']}\"}} {major_fault_memory}"
)
output_lines.append("# HELP pvc_vm_memory_minor_fault PVC VM memory minor faults")
output_lines.append("# TYPE pvc_vm_memory_minor_fault gauge")
for vm in vm_data:
minor_fault_memory = vm["memory_stats"].get("minor_fault", 0)
output_lines.append(
f"pvc_vm_memory_stats_minor_fault{{vm=\"{vm['name']}\"}} {minor_fault_memory}"
)
output_lines.append(
"# HELP pvc_vm_memory_hugetlb_pgalloc PVC VM memory huge table allocations"
)
output_lines.append("# TYPE pvc_vm_memory_hugetlb_pgalloc gauge")
for vm in vm_data:
hugetlb_pgalloc_memory = vm["memory_stats"].get("hugetlb_pgalloc", 0)
output_lines.append(
f"pvc_vm_memory_stats_hugetlb_pgalloc{{vm=\"{vm['name']}\"}} {hugetlb_pgalloc_memory}"
)
output_lines.append(
"# HELP pvc_vm_memory_hugetlb_pgfail PVC VM memory huge table failures"
)
output_lines.append("# TYPE pvc_vm_memory_hugetlb_pgfail gauge")
for vm in vm_data:
hugetlb_pgfail_memory = vm["memory_stats"].get("hugetlb_pgfail", 0)
output_lines.append(
f"pvc_vm_memory_stats_hugetlb_pgfail{{vm=\"{vm['name']}\"}} {hugetlb_pgfail_memory}"
)
#
# VM Network stats
#
output_lines.append("# HELP pvc_vm_network_macaddr PVC VM network MAC address")
output_lines.append("# TYPE pvc_vm_network_macaddr gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
mac_address = network["mac"]
output_lines.append(
f"pvc_vm_network_macaddr{{vm=\"{vm['name']}\",vni=\"{vni}\",macaddr=\"{mac_address}\"}} 1"
)
output_lines.append("# HELP pvc_vm_network_model PVC VM network device model")
output_lines.append("# TYPE pvc_vm_network_model gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
model = network["model"]
output_lines.append(
f"pvc_vm_network_model{{vm=\"{vm['name']}\",vni=\"{vni}\",model=\"{model}\"}} 1"
)
output_lines.append("# HELP pvc_vm_network_rd_packets PVC VM network packets read")
output_lines.append("# TYPE pvc_vm_network_rd_packets gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
rd_packets = network["rd_packets"]
output_lines.append(
f"pvc_vm_network_rd_packets{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {rd_packets}"
)
output_lines.append("# HELP pvc_vm_network_rd_bits PVC VM network bits read")
output_lines.append("# TYPE pvc_vm_network_rd_bits gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
rd_bits = network["rd_bytes"] * 8
output_lines.append(
f"pvc_vm_network_rd_bits{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {rd_bits}"
)
output_lines.append("# HELP pvc_vm_network_rd_errors PVC VM network read errors")
output_lines.append("# TYPE pvc_vm_network_rd_errors gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
rd_errors = network["rd_errors"]
output_lines.append(
f"pvc_vm_network_rd_errors{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {rd_errors}"
)
output_lines.append("# HELP pvc_vm_network_rd_drops PVC VM network read drops")
output_lines.append("# TYPE pvc_vm_network_rd_drops gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
rd_drops = network["rd_drops"]
output_lines.append(
f"pvc_vm_network_rd_drops{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {rd_drops}"
)
output_lines.append("# HELP pvc_vm_network_wr_packets PVC VM network packets write")
output_lines.append("# TYPE pvc_vm_network_wr_packets gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
wr_packets = network["wr_packets"]
output_lines.append(
f"pvc_vm_network_wr_packets{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {wr_packets}"
)
output_lines.append("# HELP pvc_vm_network_wr_bits PVC VM network bits write")
output_lines.append("# TYPE pvc_vm_network_wr_bits gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
wr_bits = network["wr_bytes"] * 8
output_lines.append(
f"pvc_vm_network_wr_bits{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {wr_bits}"
)
output_lines.append("# HELP pvc_vm_network_wr_errors PVC VM network write errors")
output_lines.append("# TYPE pvc_vm_network_wr_errors gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
wr_errors = network["wr_errors"]
output_lines.append(
f"pvc_vm_network_wr_errors{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {wr_errors}"
)
output_lines.append("# HELP pvc_vm_network_wr_drops PVC VM network write drops")
output_lines.append("# TYPE pvc_vm_network_wr_drops gauge")
for vm in vm_data:
for network in vm["networks"]:
vni = network["vni"]
wr_drops = network["wr_drops"]
output_lines.append(
f"pvc_vm_network_wr_drops{{vm=\"{vm['name']}\",vni=\"{vni}\"}} {wr_drops}"
)
#
# VM Disk stats
#
output_lines.append("# HELP pvc_vm_disk_rd_req PVC VM disk read requests")
output_lines.append("# TYPE pvc_vm_disk_rd_req gauge")
for vm in vm_data:
for disk in vm["disks"]:
dev = disk["dev"]
rd_req = disk["rd_req"]
output_lines.append(
f"pvc_vm_disk_rd_req{{vm=\"{vm['name']}\",disk=\"{dev}\"}} {rd_req}"
)
output_lines.append("# HELP pvc_vm_disk_rd_bytes PVC VM disk bytes read")
output_lines.append("# TYPE pvc_vm_disk_rd_bytes gauge")
for vm in vm_data:
for disk in vm["disks"]:
dev = disk["dev"]
rd_bytes = disk["rd_bytes"]
output_lines.append(
f"pvc_vm_disk_rd_bytes{{vm=\"{vm['name']}\",disk=\"{dev}\"}} {rd_bytes}"
)
output_lines.append("# HELP pvc_vm_disk_wr_req PVC VM disk write requests")
output_lines.append("# TYPE pvc_vm_disk_wr_req gauge")
for vm in vm_data:
for disk in vm["disks"]:
dev = disk["dev"]
wr_req = disk["wr_req"]
output_lines.append(
f"pvc_vm_disk_wr_req{{vm=\"{vm['name']}\",disk=\"{dev}\"}} {wr_req}"
)
output_lines.append("# HELP pvc_vm_disk_wr_bytes PVC VM disk bytes write")
output_lines.append("# TYPE pvc_vm_disk_wr_bytes gauge")
for vm in vm_data:
for disk in vm["disks"]:
dev = disk["dev"]
wr_bytes = disk["wr_bytes"]
output_lines.append(
f"pvc_vm_disk_wr_bytes{{vm=\"{vm['name']}\",disk=\"{dev}\"}} {wr_bytes}"
)
#
# Ceph OSD stats
#
output_lines.append("# HELP pvc_ceph_osd_device PVC OSD device (host + blockdev)")
output_lines.append("# TYPE pvc_ceph_osd_device gauge")
for osd in osd_data:
osd_node = osd["node"]
osd_blockdev = osd["device"]
osd_device = f"{osd_node}:{osd_blockdev}"
output_lines.append(
f"pvc_ceph_osd_device{{osd=\"{osd['id']}\",device=\"{osd_device}\"}} 1"
)
output_lines.append("# HELP pvc_ceph_osd_db_device PVC OSD database device")
output_lines.append("# TYPE pvc_ceph_osd_db_device gauge")
for osd in osd_data:
osd_db_device = osd["db_device"]
output_lines.append(
f"pvc_ceph_osd_db_device{{osd=\"{osd['id']}\",db_device=\"{osd_db_device}\"}} 1"
)
output_lines.append("# HELP pvc_ceph_osd_device_class PVC OSD device class")
output_lines.append("# TYPE pvc_ceph_osd_device_class gauge")
for osd in osd_data:
try:
osd_device_class = osd["stats"]["class"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_device_class{{osd=\"{osd['id']}\",device_class=\"{osd_device_class}\"}} 1"
)
output_lines.append("# HELP pvc_ceph_osd_util PVC OSD utilization percentage")
output_lines.append("# TYPE pvc_ceph_osd_util gauge")
for osd in osd_data:
try:
osd_util = osd["stats"]["utilization"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_util{{osd=\"{osd['id']}\"}} {osd_util}")
output_lines.append("# HELP pvc_ceph_osd_var PVC OSD utilization variability")
output_lines.append("# TYPE pvc_ceph_osd_var gauge")
for osd in osd_data:
try:
osd_var = osd["stats"]["var"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_var{{osd=\"{osd['id']}\"}} {osd_var}")
output_lines.append("# HELP pvc_ceph_osd_pgs PVC OSD placement groups")
output_lines.append("# TYPE pvc_ceph_osd_pgs gauge")
for osd in osd_data:
try:
osd_pgs = osd["stats"]["pgs"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_pgs{{osd=\"{osd['id']}\"}} {osd_pgs}")
output_lines.append("# HELP pvc_ceph_osd_size PVC OSD size KB")
output_lines.append("# TYPE pvc_ceph_osd_size gauge")
for osd in osd_data:
try:
osd_size = osd["stats"]["kb"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_size{{osd=\"{osd['id']}\"}} {osd_size}")
output_lines.append("# HELP pvc_ceph_osd_used PVC OSD used bytes")
output_lines.append("# TYPE pvc_ceph_osd_used gauge")
for osd in osd_data:
try:
osd_used = osd["stats"]["kb_used"] * 1024
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_used{{osd=\"{osd['id']}\"}} {osd_used}")
output_lines.append("# HELP pvc_ceph_osd_used_data PVC OSD used (data) bytes")
output_lines.append("# TYPE pvc_ceph_osd_used_data gauge")
for osd in osd_data:
try:
osd_used_data = osd["stats"]["kb_used_data"] * 1024
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_used_data{{osd=\"{osd['id']}\"}} {osd_used_data}"
)
output_lines.append("# HELP pvc_ceph_osd_used_omap PVC OSD used (omap) bytes")
output_lines.append("# TYPE pvc_ceph_osd_used_omap gauge")
for osd in osd_data:
try:
osd_used_omap = osd["stats"]["kb_used_omap"] * 1024
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_used_omap{{osd=\"{osd['id']}\"}} {osd_used_omap}"
)
output_lines.append("# HELP pvc_ceph_osd_used_meta PVC OSD used (meta) bytes")
output_lines.append("# TYPE pvc_ceph_osd_used_meta gauge")
for osd in osd_data:
try:
osd_used_meta = osd["stats"]["kb_used_meta"] * 1024
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_used_meta{{osd=\"{osd['id']}\"}} {osd_used_meta}"
)
output_lines.append("# HELP pvc_ceph_osd_avail PVC OSD available bytes")
output_lines.append("# TYPE pvc_ceph_osd_avail gauge")
for osd in osd_data:
try:
osd_avail = osd["stats"]["kb_avail"] * 1024
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_avail{{osd=\"{osd['id']}\"}} {osd_avail}")
output_lines.append("# HELP pvc_ceph_osd_weight PVC OSD weight")
output_lines.append("# TYPE pvc_ceph_osd_weight gauge")
for osd in osd_data:
try:
osd_weight = osd["stats"]["weight"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_weight{{osd=\"{osd['id']}\"}} {osd_weight}")
output_lines.append("# HELP pvc_ceph_osd_reweight PVC OSD reweight")
output_lines.append("# TYPE pvc_ceph_osd_reweight gauge")
for osd in osd_data:
try:
osd_reweight = osd["stats"]["reweight"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_reweight{{osd=\"{osd['id']}\"}} {osd_reweight}"
)
output_lines.append(
"# HELP pvc_ceph_osd_wr_ops PVC OSD write operations per second"
)
output_lines.append("# TYPE pvc_ceph_osd_wr_ops gauge")
for osd in osd_data:
try:
osd_wr_ops = osd["stats"]["wr_ops"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_wr_ops{{osd=\"{osd['id']}\"}} {osd_wr_ops}")
output_lines.append("# HELP pvc_ceph_osd_wr_data PVC OSD write bytes per second")
output_lines.append("# TYPE pvc_ceph_osd_wr_data gauge")
for osd in osd_data:
try:
osd_wr_data = pvc_ceph.format_bytes_fromhuman(osd["stats"]["wr_data"])
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_wr_data{{osd=\"{osd['id']}\"}} {osd_wr_data}"
)
output_lines.append("# HELP pvc_ceph_osd_rd_ops PVC OSD read operations per second")
output_lines.append("# TYPE pvc_ceph_osd_rd_ops gauge")
for osd in osd_data:
try:
osd_rd_ops = osd["stats"]["rd_ops"]
except Exception:
continue
output_lines.append(f"pvc_ceph_osd_rd_ops{{osd=\"{osd['id']}\"}} {osd_rd_ops}")
output_lines.append("# HELP pvc_ceph_osd_rd_data PVC OSD read bytes per second")
output_lines.append("# TYPE pvc_ceph_osd_rd_data gauge")
for osd in osd_data:
try:
osd_rd_data = pvc_ceph.format_bytes_fromhuman(osd["stats"]["rd_data"])
except Exception:
continue
output_lines.append(
f"pvc_ceph_osd_rd_data{{osd=\"{osd['id']}\"}} {osd_rd_data}"
)
#
# Ceph Pool stats
#
output_lines.append("# HELP pvc_ceph_pool_tier PVC Pool tier")
output_lines.append("# TYPE pvc_ceph_pool_tier gauge")
for pool in pool_data:
pool_tier = pool["tier"]
output_lines.append(
f"pvc_ceph_pool_tier{{pool=\"{pool['name']}\",tier=\"{pool_tier}\"}} 1"
)
output_lines.append("# HELP pvc_ceph_pool_pgs PVC Pool placement groups")
output_lines.append("# TYPE pvc_ceph_pool_pgs gauge")
for pool in pool_data:
pool_pgs = pool["pgs"]
output_lines.append(f"pvc_ceph_pool_pgs{{pool=\"{pool['name']}\"}} {pool_pgs}")
output_lines.append("# HELP pvc_ceph_pool_volumes PVC Pool volumes count")
output_lines.append("# TYPE pvc_ceph_pool_volumes gauge")
for pool in pool_data:
pool_volumes = pool["volume_count"]
output_lines.append(
f"pvc_ceph_pool_volumes{{pool=\"{pool['name']}\"}} {pool_volumes}"
)
output_lines.append("# HELP pvc_ceph_pool_stored_bytes PVC Pool stored bytes")
output_lines.append("# TYPE pvc_ceph_pool_stored_bytes gauge")
for pool in pool_data:
try:
pool_stored_bytes = pool["stats"]["stored_bytes"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_stored_bytes{{pool=\"{pool['name']}\"}} {pool_stored_bytes}"
)
output_lines.append("# HELP pvc_ceph_pool_free_bytes PVC Pool free bytes")
output_lines.append("# TYPE pvc_ceph_pool_free_bytes gauge")
for pool in pool_data:
try:
pool_free_bytes = pool["stats"]["free_bytes"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_free_bytes{{pool=\"{pool['name']}\"}} {pool_free_bytes}"
)
output_lines.append("# HELP pvc_ceph_pool_used_bytes PVC Pool used bytes")
output_lines.append("# TYPE pvc_ceph_pool_used_bytes gauge")
for pool in pool_data:
try:
pool_used_bytes = pool["stats"]["used_bytes"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_used_bytes{{pool=\"{pool['name']}\"}} {pool_used_bytes}"
)
output_lines.append("# HELP pvc_ceph_pool_used_percent PVC Pool used percent")
output_lines.append("# TYPE pvc_ceph_pool_used_percent gauge")
for pool in pool_data:
try:
pool_used_percent = pool["stats"]["used_percent"] * 100
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_used_percent{{pool=\"{pool['name']}\"}} {pool_used_percent:2.2f}"
)
output_lines.append("# HELP pvc_ceph_pool_num_objects PVC Pool total objects")
output_lines.append("# TYPE pvc_ceph_pool_num_objects gauge")
for pool in pool_data:
try:
pool_num_objects = pool["stats"]["num_objects"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_num_objects{{pool=\"{pool['name']}\"}} {pool_num_objects}"
)
output_lines.append(
"# HELP pvc_ceph_pool_num_objects_clones PVC Pool clone objects"
)
output_lines.append("# TYPE pvc_ceph_pool_num_objects_clones gauge")
for pool in pool_data:
try:
pool_num_objects_clones = pool["stats"]["num_object_clones"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_num_objects_clones{{pool=\"{pool['name']}\"}} {pool_num_objects_clones}"
)
output_lines.append(
"# HELP pvc_ceph_pool_num_objects_copies PVC Pool object copies"
)
output_lines.append("# TYPE pvc_ceph_pool_num_objects_copies gauge")
for pool in pool_data:
try:
pool_num_objects_copies = pool["stats"]["num_object_copies"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_num_objects_copies{{pool=\"{pool['name']}\"}} {pool_num_objects_copies}"
)
output_lines.append(
"# HELP pvc_ceph_pool_num_objects_missing_on_primary PVC Pool objects missing on primary"
)
output_lines.append("# TYPE pvc_ceph_pool_num_objects_missing_on_primary gauge")
for pool in pool_data:
try:
pool_num_objects_missing_on_primary = pool["stats"][
"num_objects_missing_on_primary"
]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_num_objects_missing_on_primary{{pool=\"{pool['name']}\"}} {pool_num_objects_missing_on_primary}"
)
output_lines.append(
"# HELP pvc_ceph_pool_num_objects_unfound PVC Pool objects unfound"
)
output_lines.append("# TYPE pvc_ceph_pool_num_objects_unfound gauge")
for pool in pool_data:
try:
pool_num_objects_unfound = pool["stats"]["num_objects_unfound"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_num_objects_unfound{{pool=\"{pool['name']}\"}} {pool_num_objects_unfound}"
)
output_lines.append(
"# HELP pvc_ceph_pool_num_objects_degraded PVC Pool objects degraded"
)
output_lines.append("# TYPE pvc_ceph_pool_num_objects_degraded gauge")
for pool in pool_data:
try:
pool_num_objects_degraded = pool["stats"]["num_objects_degraded"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_num_objects_degraded{{pool=\"{pool['name']}\"}} {pool_num_objects_degraded}"
)
output_lines.append(
"# HELP pvc_ceph_pool_read_ops PVC Pool read operations lifetime"
)
output_lines.append("# TYPE pvc_ceph_pool_read_ops gauge")
for pool in pool_data:
try:
pool_read_ops = pool["stats"]["read_ops"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_read_ops{{pool=\"{pool['name']}\"}} {pool_read_ops}"
)
output_lines.append("# HELP pvc_ceph_pool_read_bytes PVC Pool read bytes lifetime")
output_lines.append("# TYPE pvc_ceph_pool_read_bytes gauge")
for pool in pool_data:
try:
pool_read_bytes = pool["stats"]["read_bytes"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_read_bytes{{pool=\"{pool['name']}\"}} {pool_read_bytes}"
)
output_lines.append(
"# HELP pvc_ceph_pool_write_ops PVC Pool write operations lifetime"
)
output_lines.append("# TYPE pvc_ceph_pool_write_ops gauge")
for pool in pool_data:
try:
pool_write_ops = pool["stats"]["write_ops"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_write_ops{{pool=\"{pool['name']}\"}} {pool_write_ops}"
)
output_lines.append(
"# HELP pvc_ceph_pool_write_bytes PVC Pool write bytes lifetime"
)
output_lines.append("# TYPE pvc_ceph_pool_write_bytes gauge")
for pool in pool_data:
try:
pool_write_bytes = pool["stats"]["write_bytes"]
except Exception:
continue
output_lines.append(
f"pvc_ceph_pool_write_bytes{{pool=\"{pool['name']}\"}} {pool_write_bytes}"
)
return True, "\n".join(output_lines) + "\n"
def cluster_initialize(zkhandler, overwrite=False):
# Abort if we've initialized the cluster before
if zkhandler.exists("base.config.primary_node") and not overwrite:
return False, "ERROR: Cluster contains data and overwrite not set."
if overwrite:
# Delete the existing keys
for key in zkhandler.schema.keys("base"):
if key == "root":
# Don't delete the root key
continue
status = zkhandler.delete("base.{}".format(key), recursive=True)
if not status:
return (
False,
"ERROR: Failed to delete data in cluster; running nodes perhaps?",
)
# Create the root keys
zkhandler.schema.apply(zkhandler)
return True, "Successfully initialized cluster"
def cluster_backup(zkhandler):
# Dictionary of values to come
cluster_data = dict()
def get_data(path):
data = zkhandler.read(path)
children = zkhandler.children(path)
cluster_data[path] = data
if children:
if path == "/":
child_prefix = "/"
else:
child_prefix = path + "/"
for child in children:
if child_prefix + child == "/zookeeper":
# We must skip the built-in /zookeeper tree
continue
if child_prefix + child == "/patroni":
# We must skip the /patroni tree
continue
get_data(child_prefix + child)
try:
get_data("/")
except Exception as e:
return False, "ERROR: Failed to obtain backup: {}".format(e)
return True, cluster_data
def cluster_restore(zkhandler, cluster_data):
# Build a key+value list
kv = []
schema_version = None
for key in cluster_data:
if key == zkhandler.schema.path("base.schema.version"):
schema_version = cluster_data[key]
data = cluster_data[key]
kv.append((key, data))
if int(schema_version) != int(zkhandler.schema.version):
return (
False,
"ERROR: Schema version of backup ({}) does not match cluster schema version ({}).".format(
schema_version, zkhandler.schema.version
),
)
# Close the Zookeeper connection
result = zkhandler.write(kv)
if result:
return True, "Restore completed successfully."
else:
return False, "Restore failed."