#!/usr/bin/env python3 # benchmark.py - PVC API Benchmark functions # Part of the Parallel Virtual Cluster (PVC) system # # Copyright (C) 2018-2022 Joshua M. Boniface # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # ############################################################################### import psycopg2 import psycopg2.extras from datetime import datetime from json import loads, dumps from pvcapid.Daemon import config from daemon_lib.zkhandler import ZKHandler from daemon_lib.celery import start, fail, log_info, update, finish import daemon_lib.common as pvc_common import daemon_lib.ceph as pvc_ceph # Define the current test format TEST_FORMAT = 1 # We run a total of 8 tests, to give a generalized idea of performance on the cluster: # 1. A sequential read test of 8GB with a 4M block size # 2. A sequential write test of 8GB with a 4M block size # 3. A random read test of 8GB with a 4M block size # 4. A random write test of 8GB with a 4M block size # 5. A random read test of 8GB with a 256k block size # 6. A random write test of 8GB with a 256k block size # 7. A random read test of 8GB with a 4k block size # 8. A random write test of 8GB with a 4k block size # Taken together, these 8 results should give a very good indication of the overall storage performance # for a variety of workloads. test_matrix = { "seq_read": { "direction": "read", "iodepth": "64", "bs": "4M", "rw": "read", }, "seq_write": { "direction": "write", "iodepth": "64", "bs": "4M", "rw": "write", }, "rand_read_4M": { "direction": "read", "iodepth": "64", "bs": "4M", "rw": "randread", }, "rand_write_4M": { "direction": "write", "iodepth": "64", "bs": "4M", "rw": "randwrite", }, "rand_read_4K": { "direction": "read", "iodepth": "64", "bs": "4K", "rw": "randread", }, "rand_write_4K": { "direction": "write", "iodepth": "64", "bs": "4K", "rw": "randwrite", }, "rand_read_4K_lowdepth": { "direction": "read", "iodepth": "1", "bs": "4K", "rw": "randread", }, "rand_write_4K_lowdepth": { "direction": "write", "iodepth": "1", "bs": "4K", "rw": "randwrite", }, } # Specify the benchmark volume name and size benchmark_volume_name = "pvcbenchmark" benchmark_volume_size = "8G" # # Exceptions (used by Celery tasks) # class BenchmarkError(Exception): pass # # Common functions # def cleanup(job_name, db_conn=None, db_cur=None, zkhandler=None): if db_conn is not None and db_cur is not None: # Clean up our dangling result query = "DELETE FROM storage_benchmarks WHERE job = %s;" args = (job_name,) db_cur.execute(query, args) db_conn.commit() # Close the database connections cleanly close_database(db_conn, db_cur) if zkhandler is not None: zkhandler.disconnect() del zkhandler # Database connections def open_database(config): conn = psycopg2.connect( host=config["database_host"], port=config["database_port"], dbname=config["database_name"], user=config["database_user"], password=config["database_password"], ) cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) return conn, cur def close_database(conn, cur, failed=False): if not failed: conn.commit() cur.close() conn.close() def list_benchmarks(job=None): if job is not None: query = "SELECT * FROM {} WHERE job = %s;".format("storage_benchmarks") args = (job,) else: query = "SELECT * FROM {} ORDER BY id DESC;".format("storage_benchmarks") args = () conn, cur = open_database(config) cur.execute(query, args) orig_data = cur.fetchall() data = list() for benchmark in orig_data: benchmark_data = dict() benchmark_data["id"] = benchmark["id"] benchmark_data["job"] = benchmark["job"] benchmark_data["test_format"] = benchmark["test_format"] if benchmark["result"] == "Running": benchmark_data["benchmark_result"] = "Running" else: try: benchmark_data["benchmark_result"] = loads(benchmark["result"]) except Exception: benchmark_data["benchmark_result"] = {} # Append the new data to our actual output structure data.append(benchmark_data) close_database(conn, cur) if data: return data, 200 else: return {"message": "No benchmark found."}, 404 def prepare_benchmark_volume( pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None ): # Create the RBD volume retcode, retmsg = pvc_ceph.add_volume( zkhandler, pool, benchmark_volume_name, benchmark_volume_size ) if not retcode: cleanup( job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) fail( None, f'Failed to create volume "{benchmark_volume_name}" on pool "{pool}": {retmsg}', ) else: log_info(None, retmsg) def cleanup_benchmark_volume( pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None ): # Remove the RBD volume retcode, retmsg = pvc_ceph.remove_volume(zkhandler, pool, benchmark_volume_name) if not retcode: cleanup( job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) fail( None, f'Failed to remove volume "{benchmark_volume_name}" from pool "{pool}": {retmsg}', ) else: log_info(None, retmsg) def run_benchmark_job( test, pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None ): test_spec = test_matrix[test] log_info(None, f"Running test '{test}'") fio_cmd = """ fio \ --name={test} \ --ioengine=rbd \ --pool={pool} \ --rbdname={volume} \ --output-format=json \ --direct=1 \ --randrepeat=1 \ --numjobs=1 \ --time_based \ --runtime=75 \ --group_reporting \ --iodepth={iodepth} \ --bs={bs} \ --readwrite={rw} """.format( test=test, pool=pool, volume=benchmark_volume_name, iodepth=test_spec["iodepth"], bs=test_spec["bs"], rw=test_spec["rw"], ) log_info(None, "Running fio job: {}".format(" ".join(fio_cmd.split()))) retcode, stdout, stderr = pvc_common.run_os_command(fio_cmd) try: jstdout = loads(stdout) if retcode: raise except Exception: cleanup( job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) fail( None, f"Failed to run fio test '{test}': {stderr}", ) return jstdout def run_benchmark(self, pool): # Phase 0 - connect to databases try: zkhandler = ZKHandler(config) zkhandler.connect() except Exception: fail( self, "Failed to connect to Zookeeper", ) cur_time = datetime.now().isoformat(timespec="seconds") cur_primary = zkhandler.read("base.config.primary_node") job_name = f"{cur_time}_{cur_primary}" current_stage = 0 total_stages = 13 start( self, f"Running storage benchmark '{job_name}' on pool '{pool}'", current=current_stage, total=total_stages, ) try: db_conn, db_cur = open_database(config) except Exception: cleanup( job_name, db_conn=None, db_cur=None, zkhandler=zkhandler, ) fail( self, "Failed to connect to Postgres", ) current_stage += 1 update( self, "Storing running status in database", current=current_stage, total=total_stages, ) try: query = "INSERT INTO storage_benchmarks (job, test_format, result) VALUES (%s, %s, %s);" args = ( job_name, TEST_FORMAT, "Running", ) db_cur.execute(query, args) db_conn.commit() except Exception as e: cleanup( job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) fail(self, f"Failed to store running status: {e}", exception=BenchmarkError) current_stage += 1 update( self, "Creating benchmark volume", current=current_stage, total=total_stages, ) prepare_benchmark_volume( pool, job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) # Phase 2 - benchmark run results = dict() for test in test_matrix: current_stage += 1 update( self, f"Running benchmark job '{test}'", current=current_stage, total=total_stages, ) results[test] = run_benchmark_job( test, pool, job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) # Phase 3 - cleanup current_stage += 1 update( self, "Cleaning up venchmark volume", current=current_stage, total=total_stages, ) cleanup_benchmark_volume( pool, job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) current_stage += 1 update( self, "Storing results in database", current=current_stage, total=total_stages, ) try: query = "UPDATE storage_benchmarks SET result = %s WHERE job = %s;" args = (dumps(results), job_name) db_cur.execute(query, args) db_conn.commit() except Exception as e: cleanup( job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) fail(self, f"Failed to store test results: {e}", exception=BenchmarkError) cleanup( job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler, ) current_stage += 1 return finish( self, f"Storage benchmark {job_name} completed successfully.", current=current_stage, total=total_stages, )