#!/usr/bin/env python3 # benchmark.py - PVC API Benchmark functions # Part of the Parallel Virtual Cluster (PVC) system # # Copyright (C) 2018-2021 Joshua M. Boniface # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # ############################################################################### import psycopg2 import psycopg2.extras from json import loads, dumps from pvcapid.Daemon import config from daemon_lib.zkhandler import ZKHandler import daemon_lib.common as pvc_common import daemon_lib.ceph as pvc_ceph # # Exceptions (used by Celery tasks) # class BenchmarkError(Exception): """ An exception that results from the Benchmark job. """ def __init__(self, message, job_name=None, db_conn=None, db_cur=None, zkhandler=None): self.message = message if job_name is not None: # Clean up our dangling result query = "DELETE FROM storage_benchmarks WHERE job = %s;" args = (job_name,) db_cur.execute(query, args) db_conn.commit() # Close the database connections cleanly close_database(db_conn, db_cur) zkhandler.disconnect() def __str__(self): return str(self.message) # # Common functions # # Database connections def open_database(config): conn = psycopg2.connect( host=config['database_host'], port=config['database_port'], dbname=config['database_name'], user=config['database_user'], password=config['database_password'] ) cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) return conn, cur def close_database(conn, cur, failed=False): if not failed: conn.commit() cur.close() conn.close() def list_benchmarks(job=None): if job is not None: query = "SELECT * FROM {} WHERE job = %s;".format('storage_benchmarks') args = (job, ) else: query = "SELECT * FROM {} ORDER BY id DESC;".format('storage_benchmarks') args = () conn, cur = open_database(config) cur.execute(query, args) orig_data = cur.fetchall() data = list() for benchmark in orig_data: benchmark_data = dict() benchmark_data['id'] = benchmark['id'] benchmark_data['job'] = benchmark['job'] benchmark_data['test_format'] = benchmark['test_format'] benchmark_data['benchmark_result'] = loads(benchmark['result']) # Append the new data to our actual output structure data.append(benchmark_data) close_database(conn, cur) if data: return data, 200 else: return {'message': 'No benchmark found.'}, 404 def run_benchmark(self, pool): # Runtime imports import time from datetime import datetime # Define the current test format TEST_FORMAT = 1 time.sleep(2) # Phase 0 - connect to databases try: db_conn, db_cur = open_database(config) except Exception: print('FATAL - failed to connect to Postgres') raise Exception try: zkhandler = ZKHandler(config) zkhandler.connect() except Exception: print('FATAL - failed to connect to Zookeeper') raise Exception cur_time = datetime.now().isoformat(timespec='seconds') cur_primary = zkhandler.read('base.config.primary_node') job_name = '{}_{}'.format(cur_time, cur_primary) print("Starting storage benchmark '{}' on pool '{}'".format(job_name, pool)) print("Storing running status for job '{}' in database".format(job_name)) try: query = "INSERT INTO storage_benchmarks (job, test_format, result) VALUES (%s, %s, %s);" args = (job_name, TEST_FORMAT, "Running",) db_cur.execute(query, args) db_conn.commit() except Exception as e: raise BenchmarkError("Failed to store running status: {}".format(e), job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler) # Phase 1 - volume preparation self.update_state(state='RUNNING', meta={'current': 1, 'total': 3, 'status': 'Creating benchmark volume'}) time.sleep(1) volume = 'pvcbenchmark' # Create the RBD volume retcode, retmsg = pvc_ceph.add_volume(zkhandler, pool, volume, "8G") if not retcode: raise BenchmarkError('Failed to create volume "{}": {}'.format(volume, retmsg), job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler) else: print(retmsg) # Phase 2 - benchmark run self.update_state(state='RUNNING', meta={'current': 2, 'total': 3, 'status': 'Running fio benchmarks on volume'}) time.sleep(1) # We run a total of 8 tests, to give a generalized idea of performance on the cluster: # 1. A sequential read test of 8GB with a 4M block size # 2. A sequential write test of 8GB with a 4M block size # 3. A random read test of 8GB with a 4M block size # 4. A random write test of 8GB with a 4M block size # 5. A random read test of 8GB with a 256k block size # 6. A random write test of 8GB with a 256k block size # 7. A random read test of 8GB with a 4k block size # 8. A random write test of 8GB with a 4k block size # Taken together, these 8 results should give a very good indication of the overall storage performance # for a variety of workloads. test_matrix = { 'seq_read': { 'direction': 'read', 'iodepth': '64', 'bs': '4M', 'rw': 'read' }, 'seq_write': { 'direction': 'write', 'iodepth': '64', 'bs': '4M', 'rw': 'write' }, 'rand_read_4M': { 'direction': 'read', 'iodepth': '64', 'bs': '4M', 'rw': 'randread' }, 'rand_write_4M': { 'direction': 'write', 'iodepth': '64', 'bs': '4M', 'rw': 'randwrite' }, 'rand_read_4K': { 'direction': 'read', 'iodepth': '64', 'bs': '4K', 'rw': 'randread' }, 'rand_write_4K': { 'direction': 'write', 'iodepth': '64', 'bs': '4K', 'rw': 'randwrite' }, 'rand_read_4K_lowdepth': { 'direction': 'read', 'iodepth': '1', 'bs': '4K', 'rw': 'randread' }, 'rand_write_4K_lowdepth': { 'direction': 'write', 'iodepth': '1', 'bs': '4K', 'rw': 'randwrite' }, } results = dict() for test in test_matrix: print("Running test '{}'".format(test)) fio_cmd = """ fio \ --name={test} \ --ioengine=rbd \ --pool={pool} \ --rbdname={volume} \ --output-format=json \ --direct=1 \ --randrepeat=1 \ --numjobs=1 \ --time_based \ --runtime=60 \ --ramp_time=15 \ --group_reporting \ --iodepth={iodepth} \ --bs={bs} \ --readwrite={rw} """.format( test=test, pool=pool, volume=volume, iodepth=test_matrix[test]['iodepth'], bs=test_matrix[test]['bs'], rw=test_matrix[test]['rw']) retcode, stdout, stderr = pvc_common.run_os_command(fio_cmd) if retcode: raise BenchmarkError("Failed to run fio test: {}".format(stderr), job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler) results[test] = loads(stdout) # Phase 3 - cleanup self.update_state(state='RUNNING', meta={'current': 3, 'total': 3, 'status': 'Cleaning up and storing results'}) time.sleep(1) # Remove the RBD volume retcode, retmsg = pvc_ceph.remove_volume(zkhandler, pool, volume) if not retcode: raise BenchmarkError('Failed to remove volume "{}": {}'.format(volume, retmsg), job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler) else: print(retmsg) print("Storing result of tests for job '{}' in database".format(job_name)) try: query = "UPDATE storage_benchmarks SET result = %s WHERE job = %s;" args = (dumps(results), job_name) db_cur.execute(query, args) db_conn.commit() except Exception as e: raise BenchmarkError("Failed to store test results: {}".format(e), job_name=job_name, db_conn=db_conn, db_cur=db_cur, zkhandler=zkhandler) close_database(db_conn, db_cur) zkhandler.disconnect() del zkhandler return {'status': "Storage benchmark '{}' completed successfully.", 'current': 3, 'total': 3}