1. Only build on GitLab when there's a tag.
2. Add the packages on GitLab to component "pvc" in the repo.
3. Add build-unstable-deb.sh script to build git-versioned packages.
4. Revamp build-and-deploy to use build-unstable-deb.sh and cut down on
output.
Most of these would silently fail if there was e.g. an issue with the ZK
connection. Instead, encase things in try blocks and handle the
exceptions in a more graceful way, returning None or False if
applicable. Except for locks, which should retry 5 times before
aborting.
Using simple print statements was annoying (lack of timing info and
formatting), so move to using the debug logger for these instead with a
custom state ('d') with white text to differentiate them. Also indicate
which subthread of the keepalive each task is being executed in for
easier tracing of issues.
Provide textual explanations for the degraded status, including
specific node/VM/OSD issues as well as detailed Ceph health. "Single
pane of glass" mentality.
Makes this output a little more realistic and allows proper monitoring
of the Ceph cluster status (separate from the PVC status which is
tracking only OSD up/in state).
Verify our IPMI state on startup, and then warn if fencing will fail.
For now, this is sufficient, but in future (requires refactoring) we
might want to adjust how fencing occurs based on this information.
Using the Ceph library was a disaster here; it had no timeout or way to
force it to continue, so keepalives would become stuck and trigger fence
storms. Go back to the manual osd dump command with a 2s timeout which
is far more reliable and can be adequately terminated if it runs long.
This wasn't happening automatically, nor does it happen with qemu-img
commands, so we have to manually trigger a libvirt blockResize against
the volume. This setup is a little roundabout but seems to work fine.
Prevent the main keepalive thread from getting stuck due to a subthread
taking an enormous time. If this happens, the rest of the main keepalive
will continue onward, thus ensuring that the main keepalive does not
fail for a significant number of cycles, which would cause a fence.
Make the provisioner a bit more robust. This way, even if a provisioning
step fails, cleanup is still performed this preventing the system from
being left in an undefined state requiring manual correction.
Addresses #91
The previous saving throw limit (3/15s) seems to have been too low. I
was observing bizarre failures where a node would be fenced while it was
still starting up. Some of this may have been related to Zookeeper
connections taking too long, but this was inconsistent.
Increase this to 6 saving throws (30s). This provides significantly more
time for a node to properly check in on startup before another node
fences it. In the real world, 15s vs 30s isn't that big of a downtime
change, but prevents false-positive fences.