We need to do a bit more finagling with the logger on termination to
ensure that all messages are written and the queue drained before
actually terminating.
Adds the ability to send node daemon logs to Zookeeper to facilitate a
command like "pvc node log", similar to "pvc vm log". Each node stores
its logs in a separate tree under "/logs" which can then be combined or
queried. By default, set by config, only 2000 lines are kept.
This reverts commit 65d14ccd92.
This was actually a bad idea. For inexplicable reasons, running these
Ceph commands manually (not even via Python, but in a normal shell)
takes 7 * two orders of magnitude longer than running them with the
Rados module, so long in fact that some basic commands like "ceph
health" would sometimes take longer than the 1 second timeout to
complete. The Rados commands would however take about 1ms instead.
Despite the occasional issues when monitors drop out, the Rados module
is clearly far superior to the shell commands for any moderately-loaded
Ceph cluster. We can look into solving timeouts another way (perhaps
with Processes instead of Threads) at a later time.
Rados module "ceph health":
b'{"checks":{},"status":"HEALTH_OK"}'
0.001204 (s)
b'{"checks":{},"status":"HEALTH_OK"}'
0.001258 (s)
Command "ceph health":
joshua@hv1.c.bonilan.net ~ $ time ceph health >/dev/null
real 0m0.772s
user 0m0.707s
sys 0m0.046s
joshua@hv1.c.bonilan.net ~ $ time ceph health >/dev/null
real 0m0.796s
user 0m0.728s
sys 0m0.054s
Using the Rados module was very problematic, specifically because it had
no sensible timeout parameters and thus would hang for many seconds.
This has poor implications since it blocks further keepalives.
Instead, remove the Rados usage entirely and go back completely to using
manual OS commands to gather this information. While this may cause PID
exhaustion more quickly it's worthwhile to avoid failure scenarios when
Ceph stats time out.
Closes#137
Ensures that the configuration of a VF is not overwritten in Zookeeper
on a node restart. The SRIOVVFInstance handlers were modified to start
with None values, so that the DataWatch statements will always trigger
updates to the live system interfaces on daemon startup, thus ensuring
that the config stored in Zookeeper is applied to the system on startup
(mostly relevant after a cold boot or if the API changes them during a
daemon restart).
Adds support for the node daemon managing SR-IOV PF and VF instances.
PFs are added to Zookeeper automatically based on the config at startup
during network configuration, and are otherwise completely static. PFs
are automatically removed from Zookeeper, along with all coresponding
VFs, should the PF phy device be removed from the configuration.
VFs are configured based on the (autocreated) VFs of each PF device,
added to Zookeeper, and then a new class instance, SRIOVVFInstance, is
used to watch them for configuration changes. This will enable the
runtime management of VF settings by the API. The set of keys ensures
that both configuration and details of the NIC can be tracked.
Most keys are self-explanatory, especially for PFs and the basic keys
for VFs. The configuration tree is also self-explanatory, being based
entirely on the options available in the `ip link set {dev} vf` command.
Two additional keys are also present: `used` and `used_by`, which will
be able to track the (boolean) state of usage, as well as the VM that
uses a given VIF. Since the VM side implementation will support both
macvtap and direct "hostdev" assignments, this will ensure that this
state can be tracked on both the VF and the VM side.
Adds configuration values for enabled flag and SR-IOV devices to the
configuration and sets up the initial SR-IOV configuration on daemon
startup (inserting the module, configuring the VF count, etc.).
Instead of exiting and trusting systemd to restart us, instead leverage
the os.execv() call to reload the process in the current PID context.
Also improves the log messages so it's very clear what's going on.
A hot reload isn't possible due to DataWatch and ChildrenWatch
constructs, so we instead need to terminate the daemon to "apply" the
schema update. Thus we use exit code 150 (Application defined in LSB)
and reorder some of the elements of the schema validation to ensure
things happen in the right order.
Add nicer easy-to-find (yay ASCII art) banners for the startup printouts
of both the node and API daemons. Also adds the safe loader to pvcnoded
to prevent hassle messages and a version string in the API daemon file.
Should correct issues on cold start as well as if a VM crashes
uncleanly, which would prevent the VM from starting due to stale RBD
locks.
This implementation has four parts:
1. Update how IP addresses are handled, specifically by replacing all
previous instances of "vni_ipaddr" with "vni_floatingipaddr", and then
adding the "vni_ipaddr" with the real data for this node's IPs. Also
include the storage IPs in this where they weren't before, so each
this_node actually has the local IPs plus floating IPs. This enables
the next two steps.
2. Modify flush_locks to take this_node as an argument, and update the
run_command function to only operate against this node, rather than on
the primary coordinator.
3. Have the flush_locks check each lock against the current node, to
verify that the lock is actually held by the current node. This is the
only way to do this safely. During fencing, we override this by not
passing a this_node which bypasses this check.
4. Have the VM start do the check for VM failure/startup and execute a
flush_locks before actually starting the VM.
Instead of each node uploading its own OSD stats, which would not work
if the PVC daemon wasn't running, instead have the primary upload stats
for all OSDs in the cluster.
Adds a separate field to the node memory, "provisioned", which totals
the amount of memory provisioned to all VMs on the node, regardless of
state, and in contrast to "allocated" which only counts running VMs.
Allows for the detection of potential overprovisioned states when
factoring in non-running VMs.
Includes the supporting code to get this data, since the original
implementation of VM memory selection was dependent on the VM being
running and getting this from libvirt. Now, if the VM is not active, it
gets this from the domain XML instead.
Prevents a bug where the thread can crash due to a change in the
d_domain object while running the for loop. By copying and iterating
over the copy, this becomes safer.
The keepalive was getting stuck gathering memoryStats from the
non-running VM, since it was in a paused state. Avoid this by just
skipping past the rest of the stats gathering if the VM isn't running.
Using simple print statements was annoying (lack of timing info and
formatting), so move to using the debug logger for these instead with a
custom state ('d') with white text to differentiate them. Also indicate
which subthread of the keepalive each task is being executed in for
easier tracing of issues.
Verify our IPMI state on startup, and then warn if fencing will fail.
For now, this is sufficient, but in future (requires refactoring) we
might want to adjust how fencing occurs based on this information.
Using the Ceph library was a disaster here; it had no timeout or way to
force it to continue, so keepalives would become stuck and trigger fence
storms. Go back to the manual osd dump command with a 2s timeout which
is far more reliable and can be adequately terminated if it runs long.
Prevent the main keepalive thread from getting stuck due to a subthread
taking an enormous time. If this happens, the rest of the main keepalive
will continue onward, thus ensuring that the main keepalive does not
fail for a significant number of cycles, which would cause a fence.