The default of 0.05 (5%) is likely ideal in the initial implementation,
but allow this to be set explicitly for maximum flexibility in
space-constrained or performance-critical use-cases.
Adds in three parts:
1. Create an API endpoint to create OSD DB volume groups on a device.
Passed through to the node via the same command pipeline as
creating/removing OSDs, and creates a volume group with a fixed name
(osd-db).
2. Adds API support for specifying whether or not to use this DB volume
group when creating a new OSD via the "ext_db" flag. Naming and sizing
is fixed for simplicity and based on Ceph recommendations (5% of OSD
size). The Zookeeper schema tracks the block device to use during
removal.
3. Adds CLI support for the new and modified API endpoints, as well as
displaying the block device and DB block device in the OSD list.
While I debated supporting adding a DB device to an existing OSD, in
practice this ended up being a very complex operation involving stopping
the OSD and setting some options, so this is not supported; this can be
specified during OSD creation only.
Closes#142
Adds a new API endpoint to support hot attach/detach of devices, and the
corresponding client-side logic to use this endpoint when doing VM
network/storage add/remove actions.
The live attach is now the default behaviour for these types of
additions and removals, and can be disabled if needed.
Closes#141
Add an additional protected class, limit manipulation to one at a time,
and ensure future flexibility. Also makes display consistent with other
VM elements.
Like the other Celery job this does not work properly with the
ZKConnection decorator due to conflicting "self", so just connect
manually exactly like the provisioner task does.
Done to make the resulting config match the expectations when using "vm
network add", which is that networks are below disks, not above.
Not a functional change, just ensures the VM XML is consistent after
many changes.
Ensures that the bytes_tohuman returns an integer to avoid the hacky
workaround of stripping off the B.
Adds a verification on the size of a new volume, that it is not larger
than the free space of the pool to prevent errors/excessively-large
volumes from being created.
Closes#120
Add nicer easy-to-find (yay ASCII art) banners for the startup printouts
of both the node and API daemons. Also adds the safe loader to pvcnoded
to prevent hassle messages and a version string in the API daemon file.
Sets in the node daemon, returns via the API, and shows in the CLI,
information about the live VNC listen address and port for VNC-enabled
VMs.
Closes#115
Adds cluster backup (JSON dump) and restore functions for use in
disaster recovery.
Further, adds additional confirmation to the initialization (as well as
restore) endpoints to avoid accidental triggering, and also groups the
init, backup, and restore commands in the CLI into a new "task"
subsection.
Properly fixes the issue with OVA upload bodies by allowing the
restriction of the 'location' directive when parsing specific request
args. Thus the 'form' location can be included by default but removed
for those parsers that have a file body.
This reverts commit d63e757c32.
This did not work; by readding 'form' checking, the attempt to isolate
the large file upload was again thwarted. Another solution, perhaps
specific to the uploads, is needed instead.
Allow a VM to specify its migration type as a default choice. The valid
options are "default" (i.e. behave as now), "live" which forces a live
migration only, and "shutdown" which forces a shutdown migration only.
The new option is treated as a VM meta option and is set to default if
not found.
Gevent was completely failure. The API would block during large file
uploads with no obvious solutions beyond "use gunicorn", which is not
suited to this. I originally had this working with the Flask "debug"
server, so just move to using that all the time. SSL is added using a
custom context with the OpenSSL library, so include that as a
dependency.
By default, Werkzeug would require the entire file (be it an OVA or
image file) to be uploaded and saved to a temporary, fake file under
`/tmp`, before any further processing could occur. This blocked most of
the execution of these functions until the upload was completed.
This entirely defeated the purpose of what I was trying to do, which was
to save the uploads directly to the temporary blockdev in each case,
thus avoiding any sort of memory or (host) disk usage.
The solution is two-fold:
1. First, ensure that the `location='args'` value is set in
RequestParser; without this, the `files` portion would be parsed
during the argument parsing, which was the original source of this
blocking behaviour.
2. Instead of the convoluted request handling that was being done
originally here, instead entirely defer the parsing of the `files`
arguments until the point in the code where they are ready to be
saved. Then, using an override stream_factory that simply opens the
temporary blockdev, the upload can commence while being written
directly out to it, rather than using `/tmp` space.
This does alter the error handling slightly; it is impossible to check
if the argument was passed until this point in the code, so it may take
longer to fail if the API consumer does not specify a file as they
should. This is a minor trade-off and I would expect my API consumers to
be sane here.
Adds a separate field to the node memory, "provisioned", which totals
the amount of memory provisioned to all VMs on the node, regardless of
state, and in contrast to "allocated" which only counts running VMs.
Allows for the detection of potential overprovisioned states when
factoring in non-running VMs.
Includes the supporting code to get this data, since the original
implementation of VM memory selection was dependent on the VM being
running and getting this from libvirt. Now, if the VM is not active, it
gets this from the domain XML instead.