pvc/client-provisioner/examples/provisioning_script.py

169 lines
6.0 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# provisioing_script.py - PVC Provisioner example script
# Part of the Parallel Virtual Cluster (PVC) system
#
# Copyright (C) 2018-2019 Joshua M. Boniface <joshua@boniface.me>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
# This script provides an example of a PVC provisioner script. It will install
# a Debian system, of the release specified in the keyword argument `deb_release`
# and from the mirror specified in the keyword argument `deb_mirror`, and
# including the packages specified in the keyword argument `deb_packages` (a list
# of strings, which is then joined together as a CSV and passed to debootstrap),
# to the configured disks, configure fstab, and install GRUB. Any later config
# should be done within the VM, for instance via cloud-init.
# This script can thus be used as an example or reference implementation of a
# PVC provisioner script and expanded upon as required.
# This script will run under root privileges as the provisioner does. Be careful
# with that.
import os
# Installation function - performs a debootstrap install of a Debian system
# Note that the only arguments are keyword arguments.
def install(**kwargs):
# The provisioner has already mounted the disks on kwargs['temporary_directory'].
# by this point, so we can get right to running the debootstrap after setting
# some nicer variable names; you don't necessarily have to do this.
vm_name = kwargs['vm_name']
vm_id = kwargs['vm_id']
temporary_directory = kwargs['temporary_directory']
disks = kwargs['disks']
networks = kwargs['networks']
# Our own required arguments. We should, though are not required to, handle
# failures of these gracefully, should administrators forget to specify them.
try:
deb_release = kwargs['deb_release']
except:
deb_release = "stable"
try:
deb_mirror = kwargs['deb_mirror']
except:
deb_mirror = "http://ftp.debian.org/debian"
try:
deb_packages = kwargs['deb_packages'].split(',')
except:
deb_packages = ["linux-image-amd64", "grub-pc", "cloud-init", "python3-cffi-backend"]
# We need to know our root disk
root_disk = None
for disk in disks:
if disk['mountpoint'] == '/':
root_disk = disk
if not root_disk:
return
print(root_disk)
# Ensure we have debootstrap intalled on the provisioner system; this is a
# good idea to include if you plan to use anything that is not part of the
# base Debian host system, just in case the provisioner host is not properly
# configured already.
os.system(
"apt-get install -y debootstrap"
)
# Perform a deboostrap installation
os.system(
"debootstrap --include={pkgs} {suite} {target} {mirror}".format(
suite=deb_release,
target=temporary_directory,
mirror=deb_mirror,
pkgs=','.join(deb_packages)
)
)
# Bind mount the devfs
os.system(
"mount --bind /dev {}/dev".format(
temporary_directory
)
)
# Create an fstab entry for each disk
fstab_file = "{}/etc/fstab".format(temporary_directory)
for disk in disks:
# We assume SSD-based/-like storage, and dislike atimes
options = "defaults,discard,noatime,nodiratime"
# The root and var volumes have specific values
if disk['mountpoint'] == "/":
dump = 0
cpass = 1
elif disk['mountpoint'] == '/var':
dump = 0
cpass = 2
else:
dump = 0
cpass = 0
# Append the fstab line
with open(fstab_file, 'a') as fh:
fh.write("/dev/{disk} {mountpoint} {filesystem} {options} {dump} {cpass}\n".format(
disk=disk['name'],
mountpoint=disk['mountpoint'],
filesystem=disk['filesystem'],
options=options,
dump=dump,
cpass=cpass
))
# Write the GRUB configuration
grubcfg_file = "{}/etc/default/grub".format(temporary_directory)
with open(grubcfg_file, 'w') as fh:
fh.write("""# Written by the PVC provisioner
GRUB_DEFAULT=0
GRUB_TIMEOUT=1
GRUB_DISTRIBUTOR="PVC Virtual Machine"
GRUB_CMDLINE_LINUX_DEFAULT="root=/dev/{root_disk} console=tty0 console=ttyS0,115200n8"
GRUB_CMDLINE_LINUX=""
GRUB_TERMINAL=console
GRUB_SERIAL_COMMAND="serial --speed=115200 --unit=0 --word=8 --parity=no --stop=1"
GRUB_DISABLE_LINUX_UUID=false
""".format(root_disk=root_disk['name']))
# Chroot and install GRUB so we can boot, then exit the chroot
# EXITING THE CHROOT IS VERY IMPORTANT OR THE FOLLOWING STAGES OF THE PROVISIONER
# WILL FAIL IN UNEXPECTED WAYS! Keep this in mind when using chroot in your scripts.
real_root = os.open("/", os.O_RDONLY)
os.chroot(temporary_directory)
fake_root = os.open("/", os.O_RDONLY)
os.fchdir(fake_root)
os.system(
"grub-install /dev/rbd/{}".format(root_disk['volume'])
)
os.system(
"update-grub"
)
# Restore our original root
os.fchdir(real_root)
os.chroot(".")
os.fchdir(real_root)
os.close(fake_root)
os.close(real_root)
# Unmount the bound devfs
os.system(
"umount {}/dev".format(
temporary_directory
)
)
# Everything else is done via cloud-init