pvc/api-daemon/pvcapid/benchmark.py

460 lines
18 KiB
Python
Raw Normal View History

2020-08-24 14:57:52 -04:00
#!/usr/bin/env python3
# benchmark.py - PVC API Benchmark functions
# Part of the Parallel Virtual Cluster (PVC) system
#
# Copyright (C) 2018-2020 Joshua M. Boniface <joshua@boniface.me>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
import psycopg2
import psycopg2.extras
from distutils.util import strtobool as dustrtobool
import daemon_lib.common as pvc_common
import daemon_lib.ceph as pvc_ceph
def strtobool(stringv):
if stringv is None:
return False
if isinstance(stringv, bool):
return bool(stringv)
try:
return bool(dustrtobool(stringv))
2020-11-06 18:55:10 -05:00
except Exception:
2020-08-24 14:57:52 -04:00
return False
#
# Exceptions (used by Celery tasks)
#
class BenchmarkError(Exception):
"""
An exception that results from the Benchmark job.
"""
def __init__(self, message, cur_time=None, db_conn=None, db_cur=None, zk_conn=None):
self.message = message
if cur_time is not None:
# Clean up our dangling result
query = "DELETE FROM storage_benchmarks WHERE job = %s;"
args = (cur_time,)
db_cur.execute(query, args)
db_conn.commit()
# Close the database connections cleanly
close_database(db_conn, db_cur)
pvc_common.stopZKConnection(zk_conn)
def __str__(self):
return str(self.message)
#
# Common functions
#
# Database connections
def open_database(config):
conn = psycopg2.connect(
host=config['database_host'],
port=config['database_port'],
dbname=config['database_name'],
user=config['database_user'],
password=config['database_password']
)
cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor)
return conn, cur
def close_database(conn, cur, failed=False):
if not failed:
conn.commit()
cur.close()
conn.close()
def list_benchmarks(job=None):
2020-08-25 12:23:12 -04:00
if job is not None:
2020-08-24 14:57:52 -04:00
query = "SELECT * FROM {} WHERE job = %s;".format('storage_benchmarks')
args = (job, )
else:
query = "SELECT * FROM {} ORDER BY id DESC;".format('storage_benchmarks')
args = ()
conn, cur = open_database(config)
cur.execute(query, args)
orig_data = cur.fetchall()
data = list()
for benchmark in orig_data:
benchmark_data = dict()
benchmark_data['id'] = benchmark['id']
benchmark_data['job'] = benchmark['job']
benchmark_data['benchmark_result'] = benchmark['result']
# Append the new data to our actual output structure
data.append(benchmark_data)
close_database(conn, cur)
if data:
return data, 200
else:
2020-11-07 12:57:42 -05:00
return {'message': 'No benchmark found.'}, 404
2020-08-24 14:57:52 -04:00
def run_benchmark(self, pool):
# Runtime imports
import time
import json
from datetime import datetime
time.sleep(2)
cur_time = datetime.now().isoformat(timespec='seconds')
print("Starting storage benchmark '{}' on pool '{}'".format(cur_time, pool))
# Phase 0 - connect to databases
try:
db_conn, db_cur = open_database(config)
2020-11-06 18:55:10 -05:00
except Exception:
2020-08-24 14:57:52 -04:00
print('FATAL - failed to connect to Postgres')
raise Exception
try:
zk_conn = pvc_common.startZKConnection(config['coordinators'])
2020-11-06 18:55:10 -05:00
except Exception:
2020-08-24 14:57:52 -04:00
print('FATAL - failed to connect to Zookeeper')
raise Exception
print("Storing running status for job '{}' in database".format(cur_time))
try:
query = "INSERT INTO storage_benchmarks (job, result) VALUES (%s, %s);"
args = (cur_time, "Running",)
db_cur.execute(query, args)
db_conn.commit()
except Exception as e:
raise BenchmarkError("Failed to store running status: {}".format(e), cur_time=cur_time, db_conn=db_conn, db_cur=db_cur, zk_conn=zk_conn)
# Phase 1 - volume preparation
self.update_state(state='RUNNING', meta={'current': 1, 'total': 3, 'status': 'Creating benchmark volume'})
time.sleep(1)
volume = 'pvcbenchmark'
# Create the RBD volume
2020-08-25 13:29:22 -04:00
retcode, retmsg = pvc_ceph.add_volume(zk_conn, pool, volume, "8G")
2020-08-24 14:57:52 -04:00
if not retcode:
raise BenchmarkError('Failed to create volume "{}": {}'.format(volume, retmsg), cur_time=cur_time, db_conn=db_conn, db_cur=db_cur, zk_conn=zk_conn)
else:
print(retmsg)
# Phase 2 - benchmark run
self.update_state(state='RUNNING', meta={'current': 2, 'total': 3, 'status': 'Running fio benchmarks on volume'})
time.sleep(1)
# We run a total of 8 tests, to give a generalized idea of performance on the cluster:
2020-08-25 12:16:23 -04:00
# 1. A sequential read test of 8GB with a 4M block size
# 2. A sequential write test of 8GB with a 4M block size
# 3. A random read test of 8GB with a 4M block size
# 4. A random write test of 8GB with a 4M block size
# 5. A random read test of 8GB with a 256k block size
# 6. A random write test of 8GB with a 256k block size
# 7. A random read test of 8GB with a 4k block size
# 8. A random write test of 8GB with a 4k block size
2020-08-24 14:57:52 -04:00
# Taken together, these 8 results should give a very good indication of the overall storage performance
# for a variety of workloads.
test_matrix = {
'seq_read': {
'direction': 'read',
'bs': '4M',
'rw': 'read'
},
'seq_write': {
'direction': 'write',
'bs': '4M',
'rw': 'write'
},
'rand_read_4M': {
'direction': 'read',
'bs': '4M',
'rw': 'randread'
},
'rand_write_4M': {
'direction': 'write',
'bs': '4M',
'rw': 'randwrite'
},
'rand_read_256K': {
'direction': 'read',
'bs': '256K',
'rw': 'randread'
},
'rand_write_256K': {
'direction': 'write',
'bs': '256K',
'rw': 'randwrite'
},
'rand_read_4K': {
'direction': 'read',
'bs': '4K',
'rw': 'randread'
},
'rand_write_4K': {
'direction': 'write',
'bs': '4K',
'rw': 'randwrite'
}
}
parsed_results = dict()
for test in test_matrix:
print("Running test '{}'".format(test))
fio_cmd = """
fio \
--output-format=terse \
--terse-version=5 \
--ioengine=rbd \
--pool={pool} \
--rbdname={volume} \
--direct=1 \
--randrepeat=1 \
--iodepth=64 \
2020-08-25 12:16:23 -04:00
--size=8G \
2020-08-24 14:57:52 -04:00
--name={test} \
--bs={bs} \
--readwrite={rw}
""".format(
pool=pool,
volume=volume,
test=test,
bs=test_matrix[test]['bs'],
rw=test_matrix[test]['rw']
)
retcode, stdout, stderr = pvc_common.run_os_command(fio_cmd)
if retcode:
raise BenchmarkError("Failed to run fio test: {}".format(stderr), cur_time=cur_time, db_conn=db_conn, db_cur=db_cur, zk_conn=zk_conn)
# Parse the terse results to avoid storing tons of junk
# Reference: https://fio.readthedocs.io/en/latest/fio_doc.html#terse-output
# This is written out broken up because the man page didn't bother to do this, and I'm putting it here for posterity.
# Example Read test (line breaks to match man ref):
# I 5;fio-3.12;test;0;0; (5) [0, 1, 2, 3, 4]
# R 8388608;2966268;724;2828; (4) [5, 6, 7, 8]
# 0;0;0.000000;0.000000; (4) [9, 10, 11, 12]
# 0;0;0.000000;0.000000; (4) [13, 14, 15, 16]
# 0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0; (20) [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,33, 34, 35, 36]
# 0;0;0.000000;0.000000; (4) [37, 38, 39, 40]
# 2842624;3153920;100.000000%;2967142.400000;127226.797479;5; (6) [41, 42, 43, 44, 45, 46]
# 694;770;724.400000;31.061230;5; (5) [47, 48, 49, 50, 51]
# W 0;0;0;0; (4) [52, 53, 54, 55]
# 0;0;0.000000;0.000000; (4) [56, 57, 58, 59]
# 0;0;0.000000;0.000000; (4) [60, 61, 62, 63]
# 0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0; (20) [64, 65, 66, 67, 68. 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]
# 0;0;0.000000;0.000000; (4) [84, 85, 86, 87]
# 0;0;0.000000%;0.000000;0.000000;0; (6) [88, 89, 90, 91, 92, 93]
# 0;0;0.000000;0.000000;0; (5) [94, 95, 96, 97, 98]
# T 0;0;0;0; (4) [99, 100, 101, 102]
# 0;0;0.000000;0.000000; (4) [103, 104, 105, 106]
# 0;0;0.000000;0.000000; (4) [107, 108, 109, 110]
# 0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0; (20) [111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130]
# 0;0;0.000000;0.000000; (4) [131, 132, 133, 134]
# 0;0;0.000000%;0.000000;0.000000;0; (6) [135, 136, 137, 138, 139, 140]
# 0;0;0.000000;0.000000;0; (5) [141, 142, 143, 144, 145]
# C 0.495225%;0.000000%;2083;0;13; (5) [146, 147, 148, 149, 150]
# D 0.1%;0.1%;0.2%;0.4%;0.8%;1.6%;96.9%; (7) [151, 152, 153, 154, 155, 156, 157]
# U 0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%; (10) [158, 159, 160, 161, 162, 163, 164, 165, 166, 167]
# M 0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%; (12) [168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178. 179]
# B dm-0;0;110;0;0;0;4;4;0.15%; (9) [180, 181, 182, 183, 184, 185, 186, 187, 188]
# slaves;0;118;0;28;0;23;0;0.00%; (9) [189, 190, 191, 192, 193, 194, 195, 196, 197]
# sde;0;118;0;28;0;23;0;0.00% (9) [198, 199, 200, 201, 202, 203, 204, 205, 206]
# Example Write test:
# I 5;fio-3.12;test;0;0; (5)
# R 0;0;0;0; (4)
# 0;0;0.000000;0.000000; (4)
# 0;0;0.000000;0.000000; (4)
# 0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0; (20)
# 0;0;0.000000;0.000000; (4)
# 0;0;0.000000%;0.000000;0.000000;0; (6)
# 0;0;0.000000;0.000000;0; (5)
# W 8388608;1137438;277;7375; (4)
# 0;0;0.000000;0.000000; (4)
# 0;0;0.000000;0.000000; (4)
# 0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0; (20)
# 0;0;0.000000;0.000000; (4)
# 704512;1400832;99.029573%;1126400.000000;175720.860374;14; (6)
# 172;342;275.000000;42.900601;14; (5)
# T 0;0;0;0; (4)
# 0;0;0.000000;0.000000; (4)
# 0;0;0.000000;0.000000; (4)
# 0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0;0%=0; (20)
# 0;0;0.000000;0.000000; (4)
# 0;0;0.000000%;0.000000;0.000000;0; (6)
# 0;0;0.000000;0.000000;0; (5)
# C 12.950909%;1.912124%;746;0;95883; (5)
# D 0.1%;0.1%;0.2%;0.4%;0.8%;1.6%;96.9%; (7)
# U 0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%; (10)
# M 0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%;0.00%; (12)
# B dm-0;0;196;0;0;0;12;12;0.16%; (9)
# slaves;0;207;0;95;0;39;16;0.21%; (9)
# sde;0;207;0;95;0;39;16;0.21% (9)
results = stdout.split(';')
if test_matrix[test]['direction'] == 'read':
# Stats
# 5: Total IO (KiB)
# 6: bandwidth (KiB/sec)
# 7: IOPS
# 8: runtime (msec)
# Total latency
2020-11-06 19:44:14 -05:00
# 37: min
# 38: max
2020-08-24 14:57:52 -04:00
# 39: mean
# 40: stdev
# Bandwidth
2020-11-06 19:44:14 -05:00
# 41: min
# 42: max
2020-08-24 14:57:52 -04:00
# 44: mean
# 45: stdev
# 46: # samples
# IOPS
2020-11-06 19:44:14 -05:00
# 47: min
# 48: max
2020-08-24 14:57:52 -04:00
# 49: mean
# 50: stdev
# 51: # samples
# CPU
# 146: user
# 147: system
# 148: ctx switches
# 149: maj faults
# 150: min faults
parsed_results[test] = {
"overall": {
"iosize": results[5],
"bandwidth": results[6],
"iops": results[7],
"runtime": results[8]
},
"latency": {
"min": results[37],
"max": results[38],
"mean": results[39],
"stdev": results[40]
},
"bandwidth": {
"min": results[41],
"max": results[42],
"mean": results[44],
"stdev": results[45],
"numsamples": results[46],
},
"iops": {
"min": results[47],
"max": results[48],
"mean": results[49],
"stdev": results[50],
"numsamples": results[51]
},
"cpu": {
"user": results[146],
"system": results[147],
"ctxsw": results[148],
"majfault": results[149],
"minfault": results[150]
}
}
if test_matrix[test]['direction'] == 'write':
# Stats
# 52: Total IO (KiB)
# 53: bandwidth (KiB/sec)
# 54: IOPS
# 55: runtime (msec)
# Total latency
# 84: min
# 85: max
# 86: mean
# 87: stdev
# Bandwidth
# 88: min
# 89: max
# 91: mean
# 92: stdev
# 93: # samples
# IOPS
# 94: min
# 95: max
# 96: mean
# 97: stdev
# 98: # samples
2020-11-06 19:44:14 -05:00
# CPU
2020-08-24 14:57:52 -04:00
# 146: user
# 147: system
# 148: ctx switches
# 149: maj faults
# 150: min faults
parsed_results[test] = {
"overall": {
"iosize": results[52],
"bandwidth": results[53],
"iops": results[54],
"runtime": results[55]
},
"latency": {
"min": results[84],
"max": results[85],
"mean": results[86],
"stdev": results[87]
},
"bandwidth": {
"min": results[88],
"max": results[89],
"mean": results[91],
"stdev": results[92],
"numsamples": results[93],
},
"iops": {
"min": results[94],
"max": results[95],
"mean": results[96],
"stdev": results[97],
"numsamples": results[98]
},
"cpu": {
"user": results[146],
"system": results[147],
"ctxsw": results[148],
"majfault": results[149],
"minfault": results[150]
}
}
2020-08-24 14:57:52 -04:00
# Phase 3 - cleanup
self.update_state(state='RUNNING', meta={'current': 3, 'total': 3, 'status': 'Cleaning up and storing results'})
time.sleep(1)
# Remove the RBD volume
retcode, retmsg = pvc_ceph.remove_volume(zk_conn, pool, volume)
if not retcode:
raise BenchmarkError('Failed to remove volume "{}": {}'.format(volume, retmsg), cur_time=cur_time, db_conn=db_conn, db_cur=db_cur, zk_conn=zk_conn)
else:
print(retmsg)
print("Storing result of tests for job '{}' in database".format(cur_time))
try:
query = "UPDATE storage_benchmarks SET result = %s WHERE job = %s;"
args = (json.dumps(parsed_results), cur_time)
db_cur.execute(query, args)
db_conn.commit()
except Exception as e:
raise BenchmarkError("Failed to store test results: {}".format(e), cur_time=cur_time, db_conn=db_conn, db_cur=db_cur, zk_conn=zk_conn)
close_database(db_conn, db_cur)
pvc_common.stopZKConnection(zk_conn)
2020-11-07 12:57:42 -05:00
return {'status': "Storage benchmark '{}' completed successfully.", 'current': 3, 'total': 3}