PVC is a Linux KVM-based hyperconverged infrastructure (HCI) virtualization cluster solution that is fully Free Software, scalable, redundant, self-healing, self-managing, and designed for administrator simplicity. It is an alternative to other HCI solutions such as Ganeti, Harvester, Nutanix, and VMWare, as well as to other common virtualization stacks such as ProxMox and OpenStack.
PVC is a complete HCI solution, built from well-known and well-trusted Free Software tools, to assist an administrator in creating and managing a cluster of servers to run virtual machines, as well as self-managing several important aspects including storage failover, node failure and recovery, virtual machine failure and recovery, and network plumbing. It is designed to act consistently, reliably, and unobtrusively, letting the administrator concentrate on more important things.
PVC is highly scalable. From a minimum (production) node count of 3, up to 12 or more, and supporting many dozens of VMs, PVC scales along with your workload and requirements. Deploy a cluster once and grow it as your needs expand.
As a consequence of its features, PVC makes administrating very high-uptime VMs extremely easy, featuring VM live migration, built-in always-enabled shared storage with transparent multi-node replication, and consistent network plumbing throughout the cluster. Nodes can also be seamlessly removed from or added to service, with zero VM downtime, to facilitate maintenance, upgrades, or other work.
PVC also features an optional, fully customizable VM provisioning framework, designed to automate and simplify VM deployments using custom provisioning profiles, scripts, and CloudInit userdata API support.
Installation of PVC is accomplished by two main components: a [Node installer ISO](https://github.com/parallelvirtualcluster/pvc-installer) which creates on-demand installer ISOs, and an [Ansible role framework](https://github.com/parallelvirtualcluster/pvc-ansible) to configure, bootstrap, and administrate the nodes. Installation can also be fully automated with a companion [cluster bootstrapping system](https://github.com/parallelvirtualcluster/pvc-bootstrap). Once up, the cluster is managed via an HTTP REST API, accessible via a Python Click CLI client or WebUI.
To get started with PVC, please see the [About](https://docs.parallelvirtualcluster.org/en/latest/about-pvc/) page for general information about the project, and the [Getting Started](https://docs.parallelvirtualcluster.org/en/latest/deployment/getting-started/) page for details on configuring your first cluster.
View the changelog in [CHANGELOG.md](CHANGELOG.md). **Please note that any breaking changes are announced here; ensure you read the changelog before upgrading!**
<i>A single CLI instance can manage multiple clusters, including a quick detail view, and will default to a "local" connection if an "/etc/pvc/pvc.conf" file is found; sensitive API keys are hidden by default.</i>
<p><imgalt="2. Cluster details and output formats"src="images/2-cluster-details-and-output-formats.png"/><br/>
<i>PVC can show the key details of your cluster at a glance, including health, persistent fault events, and key resources; the CLI can output both in pretty human format and JSON for easier machine parsing in scripts.</i>
<i>PVC has two major client network types, and ensures a consistent configuration of client networks across the entire cluster; managed networks can feature DHCP, DNS, firewall, and other functionality including DHCP reservations.</i>
<i>PVC features an extensively customizable and configurable VM provisioner system, including EC2-compatible CloudInit support, allowing you to define flexible VM profiles and provision new VMs with a single command.</i>
<p><imgalt="11. Prometheus and Grafana dashboard"src="images/11-prometheus-grafana.png"/><br/>
<i>PVC features several monitoring integration examples under "node-daemon/monitoring", including CheckMK, Munin, and, most recently, Prometheus, including an example Grafana dashboard for cluster monitoring and alerting.</i>