pvc/daemon-common/benchmark.py

424 lines
11 KiB
Python
Raw Normal View History

2020-08-24 14:57:52 -04:00
#!/usr/bin/env python3
# benchmark.py - PVC API Benchmark functions
# Part of the Parallel Virtual Cluster (PVC) system
#
# Copyright (C) 2018-2024 Joshua M. Boniface <joshua@boniface.me>
2020-08-24 14:57:52 -04:00
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3.
2020-08-24 14:57:52 -04:00
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
###############################################################################
import psycopg2
import psycopg2.extras
from datetime import datetime
from json import loads, dumps
from daemon_lib.celery import start, fail, log_info, update, finish
2021-05-29 00:24:53 -04:00
2020-08-24 14:57:52 -04:00
import daemon_lib.common as pvc_common
import daemon_lib.ceph as pvc_ceph
# Define the current test format
TEST_FORMAT = 1
# We run a total of 8 tests, to give a generalized idea of performance on the cluster:
# 1. A sequential read test of 8GB with a 4M block size
# 2. A sequential write test of 8GB with a 4M block size
# 3. A random read test of 8GB with a 4M block size
# 4. A random write test of 8GB with a 4M block size
# 5. A random read test of 8GB with a 256k block size
# 6. A random write test of 8GB with a 256k block size
# 7. A random read test of 8GB with a 4k block size
# 8. A random write test of 8GB with a 4k block size
# Taken together, these 8 results should give a very good indication of the overall storage performance
# for a variety of workloads.
test_matrix = {
"seq_read": {
"direction": "read",
"iodepth": "64",
"bs": "4M",
"rw": "read",
},
"seq_write": {
"direction": "write",
"iodepth": "64",
"bs": "4M",
"rw": "write",
},
"rand_read_4M": {
"direction": "read",
"iodepth": "64",
"bs": "4M",
"rw": "randread",
},
"rand_write_4M": {
"direction": "write",
"iodepth": "64",
"bs": "4M",
"rw": "randwrite",
},
"rand_read_4K": {
"direction": "read",
"iodepth": "64",
"bs": "4K",
"rw": "randread",
},
"rand_write_4K": {
"direction": "write",
"iodepth": "64",
"bs": "4K",
"rw": "randwrite",
},
"rand_read_4K_lowdepth": {
"direction": "read",
"iodepth": "1",
"bs": "4K",
"rw": "randread",
},
"rand_write_4K_lowdepth": {
"direction": "write",
"iodepth": "1",
"bs": "4K",
"rw": "randwrite",
},
}
# Specify the benchmark volume name and size
benchmark_volume_name = "pvcbenchmark"
benchmark_volume_size = "8G"
2020-08-24 14:57:52 -04:00
#
# Exceptions (used by Celery tasks)
#
class BenchmarkError(Exception):
pass
2020-08-24 14:57:52 -04:00
2020-08-24 14:57:52 -04:00
#
# Common functions
#
def cleanup(job_name, db_conn=None, db_cur=None, zkhandler=None, final=False):
if db_conn is not None and db_cur is not None:
if not final:
# Clean up our dangling result (non-final runs only)
query = "DELETE FROM storage_benchmarks WHERE job = %s;"
args = (job_name,)
db_cur.execute(query, args)
db_conn.commit()
# Close the database connections cleanly
close_database(db_conn, db_cur)
if zkhandler is not None:
zkhandler.disconnect()
del zkhandler
2020-08-24 14:57:52 -04:00
# Database connections
def open_database(config):
conn = psycopg2.connect(
host=config["api_postgresql_host"],
port=config["api_postgresql_port"],
dbname=config["api_postgresql_dbname"],
user=config["api_postgresql_user"],
password=config["api_postgresql_password"],
2020-08-24 14:57:52 -04:00
)
cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor)
return conn, cur
2020-08-24 14:57:52 -04:00
def close_database(conn, cur, failed=False):
if not failed:
conn.commit()
cur.close()
conn.close()
def list_benchmarks(config, job=None):
2020-08-25 12:23:12 -04:00
if job is not None:
query = "SELECT * FROM {} WHERE job = %s;".format("storage_benchmarks")
args = (job,)
2020-08-24 14:57:52 -04:00
else:
query = "SELECT * FROM {} ORDER BY id DESC;".format("storage_benchmarks")
2020-08-24 14:57:52 -04:00
args = ()
conn, cur = open_database(config)
cur.execute(query, args)
orig_data = cur.fetchall()
data = list()
for benchmark in orig_data:
benchmark_data = dict()
benchmark_data["id"] = benchmark["id"]
benchmark_data["job"] = benchmark["job"]
benchmark_data["test_format"] = benchmark["test_format"]
if benchmark["result"] == "Running":
benchmark_data["benchmark_result"] = "Running"
else:
try:
benchmark_data["benchmark_result"] = loads(benchmark["result"])
except Exception:
benchmark_data["benchmark_result"] = {}
2020-08-24 14:57:52 -04:00
# Append the new data to our actual output structure
data.append(benchmark_data)
close_database(conn, cur)
if data:
return data, 200
else:
return {"message": "No benchmark found."}, 404
2020-08-24 14:57:52 -04:00
def prepare_benchmark_volume(
pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None
):
# Create the RBD volume
retcode, retmsg = pvc_ceph.add_volume(
zkhandler, pool, benchmark_volume_name, benchmark_volume_size
)
if not retcode:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(
None,
f'Failed to create volume "{benchmark_volume_name}" on pool "{pool}": {retmsg}',
)
else:
log_info(None, retmsg)
def cleanup_benchmark_volume(
pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None
):
# Remove the RBD volume
retcode, retmsg = pvc_ceph.remove_volume(zkhandler, pool, benchmark_volume_name)
if not retcode:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(
None,
f'Failed to remove volume "{benchmark_volume_name}" from pool "{pool}": {retmsg}',
)
else:
log_info(None, retmsg)
def run_benchmark_job(
test, pool, job_name=None, db_conn=None, db_cur=None, zkhandler=None
):
test_spec = test_matrix[test]
log_info(None, f"Running test '{test}'")
fio_cmd = """
fio \
--name={test} \
--ioengine=rbd \
--pool={pool} \
--rbdname={volume} \
--output-format=json \
--direct=1 \
--randrepeat=1 \
--numjobs=1 \
--time_based \
--runtime=75 \
--group_reporting \
--iodepth={iodepth} \
--bs={bs} \
--readwrite={rw}
""".format(
test=test,
pool=pool,
volume=benchmark_volume_name,
iodepth=test_spec["iodepth"],
bs=test_spec["bs"],
rw=test_spec["rw"],
)
log_info(None, "Running fio job: {}".format(" ".join(fio_cmd.split())))
retcode, stdout, stderr = pvc_common.run_os_command(fio_cmd)
try:
jstdout = loads(stdout)
if retcode:
raise
except Exception:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(
None,
f"Failed to run fio test '{test}': {stderr}",
)
return jstdout
def worker_run_benchmark(zkhandler, celery, config, pool):
2020-08-24 14:57:52 -04:00
# Phase 0 - connect to databases
cur_time = datetime.now().isoformat(timespec="seconds")
cur_primary = zkhandler.read("base.config.primary_node")
job_name = f"{cur_time}_{cur_primary}"
current_stage = 0
total_stages = 13
start(
celery,
f"Running storage benchmark '{job_name}' on pool '{pool}'",
current=current_stage,
total=total_stages,
)
try:
db_conn, db_cur = open_database(config)
except Exception:
cleanup(
job_name,
db_conn=None,
db_cur=None,
zkhandler=zkhandler,
)
fail(
celery,
"Failed to connect to Postgres",
)
current_stage += 1
update(
celery,
"Storing running status in database",
current=current_stage,
total=total_stages,
)
2020-08-24 14:57:52 -04:00
try:
query = "INSERT INTO storage_benchmarks (job, test_format, result) VALUES (%s, %s, %s);"
args = (
job_name,
TEST_FORMAT,
"Running",
)
2020-08-24 14:57:52 -04:00
db_cur.execute(query, args)
db_conn.commit()
except Exception as e:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(celery, f"Failed to store running status: {e}", exception=BenchmarkError)
current_stage += 1
update(
celery,
"Creating benchmark volume",
current=current_stage,
total=total_stages,
)
2020-08-24 14:57:52 -04:00
prepare_benchmark_volume(
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
2020-08-24 14:57:52 -04:00
# Phase 2 - benchmark run
results = dict()
2020-08-24 14:57:52 -04:00
for test in test_matrix:
current_stage += 1
update(
celery,
f"Running benchmark job '{test}'",
current=current_stage,
total=total_stages,
)
results[test] = run_benchmark_job(
test,
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
2020-08-24 14:57:52 -04:00
# Phase 3 - cleanup
current_stage += 1
update(
celery,
"Cleaning up venchmark volume",
current=current_stage,
total=total_stages,
)
2020-08-24 14:57:52 -04:00
cleanup_benchmark_volume(
pool,
job_name=job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
2020-08-24 14:57:52 -04:00
current_stage += 1
update(
celery,
"Storing results in database",
current=current_stage,
total=total_stages,
)
2020-08-24 14:57:52 -04:00
try:
query = "UPDATE storage_benchmarks SET result = %s WHERE job = %s;"
args = (dumps(results), job_name)
2020-08-24 14:57:52 -04:00
db_cur.execute(query, args)
db_conn.commit()
except Exception as e:
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
)
fail(celery, f"Failed to store test results: {e}", exception=BenchmarkError)
2020-08-24 14:57:52 -04:00
cleanup(
job_name,
db_conn=db_conn,
db_cur=db_cur,
zkhandler=zkhandler,
final=True,
)
current_stage += 1
return finish(
celery,
2023-11-16 19:56:24 -05:00
f"Storage benchmark {job_name} completed successfully",
current=current_stage,
total=total_stages,
)